OUGH INTERPRETIVE TECHNIQUES Final
Report G. Foster) et al (Syracuse Univ,)

J

R

/) COMPUTER ENHANCEMEN R S

. TN

TN .S THROUGH o777 fwf;,a
. INTERPRE/TIVE TECHNIQUES R

S R e .f’,:[;;? y - e

4 = o PREPARED FOR © . o
NA}ION AERONAUTICS AND'SPACE ADMINIST»RAAT\I/ONVI

' GODDARD-SPACE-FLIGHT CENTER - /.

P s GREENBELT, MARYLAND 20771~ '~ o)

/-
. . i - - Sy, e
} > J: __\‘ /‘ N ‘T)f,— -
K > - T ’\\~ .~ 0
/: o

o I’NAL REPORT. . -7
NASA\GRA‘N{NQR};QZZ 125) \1,»;)-,,\,,,
/‘\— ' : L ¥ 2

-

. R .o o Lt s -
. . N - - L = - - -
% >/_// ' . e »U - - o T A =
o i . \ . N ,) T 7
o

. - e /,S' (& ﬁ_ . . Lo
- - . \ »'/(—" \) *\-- o . K -;‘ ‘\‘> ’, -). - j
v) /,/41"&') ://(5\):lr" \x\ . \JANUA R?’ 972 4’7 »)‘ ‘. X)\-//1: ';.,‘IA:/" / vl’,
. o N X — N . - - N
s - S . el e TN) o n T 'v,~l_—/'/))/'. - o e~
- /,) X ;. N “ .",.’/\ ‘ — ‘- P '_-l ‘\ - ! L . - L
. - . /_M 7?3 /’-) ¥

oo

'\Garth Foster, ‘PnnC\Ipal Investlgotor S

L T
. N L R Lo =T
R Werzner E stumpf “ AT
' \ CE “’ A RN X RIS - . B) R
o h, ! - l ’ i {uv“ ; / 4\l; —f/ ~> .\(/ - EA ’,,.‘
3 4 AN . t e - . [e - ‘ .
— N €.¢i oA LT .
} AV NN Voo ’ S o [\ J .
Lo~ Vo . Y y \} T .~ o ‘: = . S
~ 1 . LT' ' — - - . o (/(. : o r i < L N rj / ;\H:’ s~
: N o S S E
SA CR-122469) ‘COMPUTER ENHANCEMENT

1972 89 p

CSCL 09B Unclas

| 63708 40u66 o
R TSI Ay "‘zu"* TRERSTA

T B e T

B o LN L4 , ‘ —
.»3 - e Reproduced ;y o b l IS S E - ~.,‘ . T "‘ r
e e NATKMQALTECHh“CAL S S S
rmici—e INFORMATION SERVICE N

N - R U S Department of Commaerce . o PN ’ Nt

L\\ . "‘ -) PR \S‘pnngfleld VA 2215! X /\ ~

. AN TN e s
A,J‘_T N e : y LT N T
. /\. Y. N

:;;‘.1 SYRACUSE um\venswv -y ;7{ -j_pf—-;."
L / xSYRACUS\E N. voo G

/
i
\\

-
[',) R
- . { . . RN
¢ 7 - :

- | X
S . . ' ~ . RS
. : ~ .) [.
Lo g (- o . D \ N

Computer,Enhancemeht Through [nterpretive Techniques

Final Report
NASA Grant NGR 33 - 022 - 125

Janvary 1972

Garth H. Foster, Principal Investigator
» with
Henk A. E. Spaanenburg
Werner E. Stumpf

Department of Electrical and Computer Engineering
Syracuse University

Syracuse, New York l§210

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

TARLLT OF CONTENTS
INTRODUCTION
THE COMPUTER ENVIRONMENT
SCOPE OF THE PROBLEM

PRIMITIVE CONSTRUCTS

4,1 Timing Considerations

4,2 Space‘Requirements

4,3 Scalar Functions Extended to Vectors
4.4 Scalar Functions Extended to Matrices

4.5 Summation

MATRIX INVERSION AND LEAST SQUARES TECHNIQUES
5.1 Results

5.2 Summary

CLOSED PARTITIONS ON THE STATES OF FINITE STATE
MACHINES

6.1 Translating from FORTRAN to APL
6.2 Results for Time and Space

THE FAST FOURIER TRANSFORM
7.1 Tests and Results for the FFT

A NASA APPLICATION PROGRAM

8.1 Program Characteristics and Programming
Froblems

8.2 Recasting the Original APL Program
8.3 Size of Computations and Their Implications

CONCLUSIONS
REFERENCES

APPENDIX A
FAST FOURIER TRANSFORM PROGRAMS APL and FORTRAN

APPENDIX B

THE FORTRAN VERSION OF BEAM FOR THE NASA
RADIATION PATTERN PROGRAM

(1

11
12
15
17
19

20
21
25

27
29
41

42
48

50

51
52
59

65

67

74

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

6.12

8.1

8.2

4.1
4,2
4.3

4.4

FIGURES

SP Functions 28
FORTRAN Flowchart 30
Translation Steps 33
Subroutine REDUCE 39
Subroutine SUM 39
Subroutine NORIZ 40
Subroutine EQUAL 40
Subroutine LESS 40
Moments for REDUCE 43
Moments for SUM L4
Moments for NORIZ and EQUAL 45
Moments for LESS 46
BEAJJ (ORIGINAL) 53
BEAM (MODIFIED) 57
TABLES
Primitive Constructs Timings 9
Primitive Constructs Space Requirements 13
Linear Fit for Vector ADD 16
Quadratic for Matrix ADD : 18

(11)

COMPUTER ENHANCEMENT THROUGH INTERPRETIVE TECHNIQUES

‘1.0

INTRODUCTTION

This study had as its thesis the improvement in the usage of
the digital computer through the use of the technique of interpre-
tation rather than the compilation of higher ordered languages.
Consequently, we have concerned ourselves on the one hand with the
efficiency of coding and execution of programs written in higher
ordered languages such as FORTRAN, ALGOL, PL/I and COBOL. Programs
written in these languages are compiled or translated to the ma-
chine language of a specific machine and run in a production
environment, generally that of multiprogramming.

For this study, we have selected FORTRAN as the high level
language in examining programs which are compiled. Widespread use
of the language, particularly for problems of a scientific nature,
and the extensive numbers of implementations of the language over
many years, clearly make FORTRAN a logical choice. While con-
siderable experience has been gained in working with and creating
compiler implementations for higher level languages, success re-
duced interest in the design of languages for whiéh reasonably ef-
ficient execution in an interpretive implementation might be ex-
pected.

It would be useful if a study could have been made dealing
only with general parameters of languages which.effect either
compilétion or interpretation. It was felt that this was not
possible, and a terse, powerful language was needed as the choice
for the interpretive portion of this study. .

For the interpretive language we chose A Programming Language,

or Iverson's notation as it has sometimes been termed. [1,2,3,4]

: (1)

The reasons for this choice are: 1) The language is rich in function,
allowing for a compact notation for defining programs and intuitively
offering a high compression ratia between source and a compiled
equivalent. 2) In the APL, interpreter the defined functions (pro-
grams) are stored nearly in source code, while the data and constants
are stored in an internal format giving makimum compactness for
both program and data. 3) The APL Terminal System is oriented
towards processing regular arrays of data offering the possibility
of minimizing interpretation overhead. 4) The primitive functions
~have been optimized>due to hand coding in the assembler language.

The rationale of this study was that there are three areas where
interpretive techniques could enhance the performance of computers.
The first would be in those instances where interpreters could best
compilers in execution speeds. Investiéating such a possibility
implies the restriction of the problems to areas in which both
techniques could be applied and of course the use of higher level
languages in coding the problems.,

‘The second way in which utility could be provided by inter-
preters is that of trading machine cycles or execution speed for
‘space in the run time code streaﬁ. The third way in which inter-
pretation techniques would be of value would obtain if the imple-
mentation of an interpreter of a given language provides more ef-
fective use of programmer time in the development of software and
for problems which are to be run once or only a very few. number of
times. In this context it is enVisaged that a given language would
have two (and perhaps more) implementations; one would be an inter-
preter on which the program development would be done and the other
would be a compiler in which the production work would be doﬁe. Ir
the problem is to be run few enough fimes, then the interpreter
only would be used. Here the number referred to as a few depends
upon the 'size and complexity of a program, the execution and compile
time in addition to the interpreted run time, the cost of the pro-
gram development, and the number of compilations used before the

program may be run usefully for the first time. The three points

(2)

of view relative to interpretation given above sketch a range of
capabilities ranging from direct superiority to sometimes usefulness.

In this report a knowledge of APL and FORTRAN is assumed.

THE CCMPUTER ENVIRONMENT

The equipment and machine configuration on which this study
has been Tondgcted is Svracuse miversity's IRM Syhiem/300!Model
50 I (512 K bytes) with 2 2314 disk units. The operating system
is the Syracuse University Opérating System {SUGS), Jaxmédifitation
5f muléiprogramming with a fixed fumbed,of tasks (MET II)Irelease
18.6, of 0S/360 using a HASP-like spooling program to provide
spooling and allocation of ports to interactive problem processors.
Currently ;. SUOS is at the level of Release T, modification 2.

All computer runs were made between September 16, 1970 and SeptemBer _
15, 1971, and this period covers the time frame when APL was
available as Program Product in its initial form, (XMI), and as a
later, enhanced . version, (XM6), both opeiating under Operating
System /368 (0S/360). .The FORTRAN H system is also available

as a current IBM Program Product. Optimization was set to OPT=2,

or the greatest level, for all FORTRAN runs except for the case
dealing with the partitioning of finite state sequential machines.
-This case will be detailed later.

Although the FORTRAN programs were developed, debugged, and
timed in a multiprogramming environment, times reported were mea-
sured in a pure rather than a batch environment. The same
practice was followed for the programs developed in APL by use of
the APL ‘Terminal System. Thus, in the pure environment APL is up,
when APL is being measured and there are no other APLusers on the
system, nor are thére any batch users on the System. When FORTRAN
is being measured in this environment APL is not up and no other batch

users are on the system. Ranges of measured times between the two

(3)

modes are comparable, but measuring times in a pure environment
1)Gives repeatibility to within the resolution of the timer and
reduces the necessity of running many tests to obtgin statistically
measured times. 2) The problem of interferrence from and with other
programs is minimized reducing, for example, the swap time attributable
to them. 3) Minimizing the confluence in -an absolute sense, as

done here, produces an approximation of a batch AFL " which may ‘then b?
compared to normal batch mode processing in a higher ordered language.
All measurements were made using the software monitors provided

by the system. Since these were based on the system timer for the
Model 50 which has a resolution interval of 16.67 milliseconds

'(1/60 of a second), some variations in.times, even in the pure
environment, will be encountered when the absolute times are small.
These deviations are due, in part, to'the software overhead in re-
cording the times in addition to the problem of resolution. 1In
general, the times measured for fhe two modes were sufficiently
different and of a size that the error in making measurements in -

this manner was either not severe, or was reduced by measuring

larger samples. ‘

Program sizes in both modes of investigation are covered later
but system sizes should be noted, FORTRAN H required partitions of
about 160 K bytes. APL, in this system, requires 178 K bytes, if
two workspaces are kept in core at a time (the minimum possible)
and 216 K bytes if 3 workspaces are kept in core. The size of the
workspace in both cases is 36 K bytes, a size which has become a
defacto "standard" for APL\360 . Some variations from IBM estimates
bf cote._requirements are to be noted for this system because SUOS
allocates physical ports to APL and additional space 1is required
for the interface. The nominal size requirements [5] are given by
 the estimates: '

" SIZE < 88000+ (336xPORTS)+INCOREX8+2048x[WSSIZE+20u8
That is to say the amount of core in bytes required is 88000 for the

interpreter and supervisor plus the storage required for terminal

()

handling (336 bytes per port) plus the number of workspaces in
core times two words (8 bytes) more than the size of a workspace
rounded up to the nearest 2 K boundary. The 36000 bytes choice
for WSSIZE provide about 32000 bytes to the user.,

3.0 SCOPE OF THE PROBLEMS

In any study there is always the question as to whether tHe
range and the choice of problems are meaningful. We have chosen
five areas for consideration and these are: 1) Primitive constructs,
2) Matrix inversion and operations on systems of linear equationms,
3) The partitioning of the states of a finite state sequential
machine, 4) The Fast Fourier Transform (FFT), and 5) A program for
calculating the radiation pattern of an antenna with parabolic
geometry. The last case was a program developed at Goddard by a
visiting scientist and represents a typical application'area at the
Goddard Space Flight Center.

Examination of primitive constructs seeks a rough measure of
relative efficiencies between APL, as an interpreter, and FORTRAN
producing a compiled code stream, for simple computational
constructs. The purpose of comparing primitive expressions was
M not an attempt to produce an absolute measure of power. Indeed,
the constructs which were chosen are so simple that they are not
likely to be individually significant in real life. They attempt
to give insight into interpretation versus compilation in places
where concise APL expressions, primarily reductions, dealing
with vectors or matrices substitute for one or more DO loop
structures in an equivalent FORTRAN program. The next point of
examination was to consider the trade-off found in the interpreted
environment (APL) between using a primitive construct such as
scalar dyadic functions extended to arrays versus performing the
function in a FORTRAN-like manner, with loops and operating on

(5)

scalars, while using an interpreter.

The second type of problem, matrix inversion and least squares
techniques, gives a fairly complex situation, the programming for
which has become more and more standardized. Matrix inverse
routines are found in most scientific subroutine packages for the
compiled environment and their use in that mode makes the library
an important point of study when considering interpreters (essentially
a library of routines) versus compiled code. Here DOMINO (8)
was compared with matrix inverse routines found in the Scientific
Subroutine Package as well as with Gauss-Jourdan and Gauss -Siedel
routines written in APL and in FORTRAN.

The third area, finding all partitions of a finite state
sequential machine having the substitution property, is one that
is matrix oriented in formulation but iterative in solution. The
problem can be handled through batch programming techniques but an
interactive approach is most useful. The problem had been
prograﬁmed elsewhere in FORTRAN on the Michigan Terminal System
and then programmed by one of the authors (GHF) in (APL). Both
implementations were turned over to another author of this report
(H.A.E.S.) who at the time knew the algorithm for solution and
was proficient in ALGOL but who had only then begun to learn
FORTRAN and APL . The goal was to obtain measures of efficiency
of coding in time and space and to test the readability of code in
both systems. Additionally, the ability of tramslating from
FORTRAN to APL 1is commented upon. For the examples chosen the
space requirements are not pressing in either system. The APL
written versions attempt to make the best use of the array
feature of the language although there may be some limitations
because of the problem.

The Fast Fourier Transform, in Case 4, is another situation
where array capability plays a role and yet where an iterative

process must be applied. Here a version of the FFT published
(6)

originally in ALGOL was translated to FORTRAN (by WES who knew
FORTRAN and APL but not ALGOL) while the APL wversion was an
improved version of a previously published FFT written in APL.
In this case as with the previous one, some degree of program
writing or translation may be inferred along with the results
quoted for space and time requirements. In this case the space
requiremeﬂts for data storage in APL hamper the size of the FFT
which may be used in that environment. While we examine the
results obtained both in APL and in FORTRAN under the restriction
that the data must fit in a 36K byte workspace (about 32K bytes
available to the user), no projection is mode to larger data
sizes. Primary interest in the programming task was programming
ease, program size and relative efficiency.

The final task an antenna field problem, as mentioned
previously, was originally programmed in APL as a development
model for the running version of the program which was coded in
‘FORTRAN In the present context the original APL function, and
the report which was written to document the work performed by
the NASA researcher, were used to rewrite the program to take
advantage of the array capabilities of APL. The size of the
space needed for data far exceeds the capaBilities of storage in
a normal system when attempting to make full use of the array
orientation of APL., An approximation of speeds is mode on the

basis of smaller programs however.
4,0 PRIMITIVE CONSTRUCTS

The initial results in examining some of the primitive
constructs are summarized in Tables 4.1 and 4.2. Ten examples are
considered and a cursory examination shows that a number of cases -
deal with plus and times reduction. The reduction operator
applied to vectors is equivalent to a single DO loop in FORTRAN
and the times and plus function have often been quoted as
measures of "computer power' so that add and multiply times for

(7

popular computer systems are generally well known. Both functions
have common counterparts in mathematical notation namely.the summation
over (I) and product (m) notations.

All cases are easy to understand and enter into the APL
Terminal System. The same expressions when coded in a FORTRAN
main program did not require an excessive amount of coding time
but in: at least.one case each there was some. choice (Case.8) and
some. difficulty (Case.l1l0) in coding the subscripting in the DO
loops.

Before direct comment is made on the times and space
requirements, it should be noted that.in addition. to taking added
time to code ,the FORTRAN debugging times were longer .due to what
generally amounted to nearly a 24 hour turn around .on.program
runs. This was because FORTRAN H, OPT = 2 was being used and the
required region size of 160 K was not available continuously
throughout . the day. Consequently, no time spaﬁs to.code and
debug the equivalent FORTRAN programs for these ten expressions
are given.

A longer time to code and debug the equivalent FORTRAN
expression program was .found for other tasks, as well as for
this one, but no comparisons are offered due to the small number
of programmers involved and the variations in programming skill

and experience among those persons involved in this study.

(8)

1

2)

3)

5

5

6)

7)

TIMES in 60's of a second.

+/11

+/12000

+/2000p1

+/17500

x/11

x/156

X/2000p1

* Compile Load and Go

TABLE 4.1

Primitive Constructs

€))

APL
60"

of a second

1‘45

46.7

44,1

165.6

1.76

3.9

50.7

%4
R¥*4
R*8

I*4
R*4
R*8

I*4
R*4
R*8

I*4
R¥*4
R*8

%4
R¥*4
R*8

I*4
R*4
R*8
I*4
R*4
R*8

FORTRAN
CLG *

580
604
615

588
623
605

615
574
583

600
614
644

574
590
595

611
608
591

596
604
599

GO

16
17
19

17
24
24

16
12
17

16
48
48

18
18
19

15
22
17

23
26
23

8) +4/(11000) € 11000

9) D+.LD « 3 3 pig

10) D+.LD «5.5 51125

*Compile Load and Go

APL
Time in

60's of a second

4086.6

2.I7

74

I*4
R*4
R*8

I*4
R*4
R*8

I*4
R*8
I*4
R*4
R*8

Table 4.1 Continued

(10)

FORTRAN
CLG*

1 < J <1000
700
692

1086
1022
1095

397
390
389

477
478
476

17
16

41
36
39

4,1 Timing Considerations

Case 1 and Case 5 represent the overhead in each case in setting
up the looping mechanisms and terminating the processes in
question. Cases 2 and 3 represent a moderate number of components
(in terms of the size of the workspace). In Case 3 the data is
easier to.generate but packing and unpacking the data takes place
between generation and reduction. Number 4 approaches the upper
size of vector of intergers which may be generated in a 36K
workspace. .The sixth expression is limited by the.largest
factorial which may be exactly calculated using long precision

_arithmetic. The seventh expression may be compared to number 3

in terms.of changing the function of.reduétion. Cases. 8, 9, 10
represent more. complex problems in data generation, searching, and
inner product. There is no significance to the choice of tﬁe
.functions used in.the inner product except that minimum was

.. chosen as a reasonably.simple primitive requiring either some
,additionaI“codinguin,FORTRAN or a call to a,FORIRAN.libfary
routine.

For reductions over vectors with a small nimber of components,
APL 1is faster than the execute step of the compiled FORTRAN. In
these cases the careful hand.codinghrequired.of‘an.inte;pféter
pays off. In longer running cases . the overhead.of. the. compiled

. cases is over-shadowed by increased.times of interpretive
execution. For DO.loop.equivalents where. the number of iterations
is in the range of 100 to 200, APL is faster than FORTRAN and
within the scope of ‘the workspace sizes: .and:accuraciés’ dvailableéc APL is
in the extreme, from.2.to 10 times slower. than the.GO step of
compiled FORTRAN. 1In-.fact such a comparison 1s.too.severe.
Since any interactive system does scheduling. and. swapping and
portions a share to. each process we should also. have.to count
* gimilar amounts when.examining the compiled code. .. Thus.we. should

calculate

(11)

(time schedule compiler
+ time to compile
+ time to schedule
Linkage Editor
+ time to execute the
Linkage Editor
+ time to schedule
the GO step
+ Nx GO step time) + N
where N is positive number giving ~ measurement of frequency of
use.

Such a formula is more equitable but really only gives a
reasonable picture when the N runs. are sequential, otherwise
the scheduler times for the GO step and perhaps the linkage
editor step should be apportioned differently. '

Relative to FORTRAN coding, particularly in those areas where
increased accuracy may be of value but not necessarily needed,
programmers should consider using long. (double) precision.
Neither the time nor the space penalty is commensurate with
improved accuracy and not having to worry about conversion

problems when mixing precisioms.
4,2 Space Requirements

Table 4.2 -gives space considerations for the same cases examined
“in fable 4.1 ¥In ‘AP -ve give 'sizes for the space required by the
codestring when typed in from the terminal and when the same string
is line 1 of a result returning function. Function definition
overhead for APL\360 4is about 40 bytes plus 8 bytes overhead
per line. The word "about" relates to the variability that occurs
in the variety of . function types, local variables and when the
entries in the workspace end on a full word boundary.

The APL codestring sizes are roughly one tegth of the size of

(12)

TABLE 4.2
ﬁRIMITIVE CONSTRUCTS

SPACE REQUIREMENTS

RUN TIME
PACKAGE (DYNAMIC DATA
SIZE FOR APL)

PROGRAM
SIZE (BYTES)

1)

2)

3)

4)

5)

6)

APL FORTRAN APL FORTRAN
+/11 24 bytes 210 36 20,592
(codestring) 262 20,640
68 bytes 262 20,640
(function)
+/12000 202 8032 20,584
24 codestring 254 20,622
68 function 262 20,640
+/2000p1 214 284 20,592
32(codestring) 214 20,592
72 function 222 20,600
+/17500 202 30032 20,584
24(codestring) 254 20,622
68 (function) 262 20,640
x/11 210 36 20,592
24(codestring) 262 20,640
68 (function) 262 20,640
x/156 270 260 20,648
24 (codestring) 254 20,632
68 (function) 262 20,640

(13)

7)

8)

9)

10)

TABLE 4.2 (continued)

APL,
x/2000p1
32(codestring)
72(function)
+/(11000)e11000
1<J=<1 32(codestring)
76 (function)
1 < J < 1000
D+. LD «3 3p19
44(codestring
88(function)
D+. LD <55 5p1125
48(codestring)
92 (function)

(14)

FORTRAN
214
214
222

228
240
240

238
250
250

396
386
458

1078
1076
1606

APL,
284

8192

168

1572

FORTRAN
20,592
20,592
20,600

20,608
20,616
20,616

20,616
20,632
20,632

20,776
20,768
20,840

21,456
21,456
21,986

the FORTRAN programs. The overhead penalty for data for APL is
somewhat higher due to the dynamic nature of the storage of values.
The nature of the interpreter and the data representation also
account for the expansion of storage requirements during execution
for APL\360. The size of the FORTRAN run time package is quite
large compared to the program (almost two ordeys of magnitude).
While larger FORTRAN programs are not likely to show as badly, it
should be kept in mind that if the average size of a FORTRAN run
time package were 20K bytes then 4 FORTRAN programs would carry
along requirements of space which in combination would be almost

as large as the APL\360 interpreter.
4,3 Scalar Functions Extended to Vectors

If any of the advantages of APL (the interpreter environment)
are to be gained then the strong points of the language based in .
the interpreter must be exploited. It was decided to examine the
use of the extension of the primitive dyadic scalar + to vectors
and matrices rather than the use of FORTRAN style.looping in
APL. The object was to gain insight into the cost of the looping
and its associated interpretation costs in APL. .To accomplish
this times for the primitive + were measured against the function
ADD for the vector lengths of 1, 2, 4, 10, 16, 20, 24, 28, 32,
64, 128, 256, 512 and 1024 elements,

VZ « A ADD B; I

[1] Z « (p4d) 00
[21] I« 1
(3] Li: Z[I] « A[LI]1 + BLI]
fu] >((I<«I+1) < pA) /11
v

Clearly ADD simulates a FORTRAN-like way of performing vector
addition.
Using the APL function, Domino (B), least square fits of

(15)

degr;e 1 to 5 were made for both the primitive + and the function
ADD,

Since the number of loops in ADD or embedded in + is linear,
we should expect an adequate fit using the form

Vi ma,ta XX

The results of the least squares fit for polynomials of degrees

one and two are summarized in Table 4.3.

DEGREE OF POLYNOMIAL
1 2
+ ADD + ADD
a, [L.479 1.906 1.628 1.888
a, [0.0106 2,184 7.321E:2 2,185 3
a, - - 3.490E°°] 1.111E
sum
of [1.302 | 16.53 0.3583 | 16.53
square
TABLE 4.3

The size of the coefficient of the quadratic term relative to
the first order.coefficient indicates that we will have about 3%
difference in what would have been predicted using the linear
model when 1000 element arguments are used. The reduction in the
sum of squares between the model and actual measurements for +
when going from a linear to a quadratic fit is due to the short
time needed for execution of the + functions;greater inaccuracies
in measurement exist when adding small vectors.with numbers of
elements and a higher order polynomial fits the dispersed data
better.

We conclude that the linear model will be good enough to give
reasonable insight into a comparison of the primitive extended to

- vectors and a FORTRAN-like program simulating the extension.
Examination of the constant coefficients (1.479 and 1.906)

would tend to indicate that about 297 more time is required for
(16)

initialization in the looping case; however, it should be noted
that the ADD coding appeared as a function call and thus required
interpretation and elaboration above and beyond that which would
be needed if the same code appeared.in line. The linear terms
(0.0106 and 2.184) clearly indicate.that simulating the extension
is 206 times less efficient than using the. primitive. This extra
time arises from two sources, the first of which is interpreting
the line (or lines) n - 1 times more than would be required if
looping did not have to be used. In addition to the lines being
longer to do the same amount of work, generally two lines are
required; one to do the branching.and another in which the
function is performed with suitable. indexing of the. vector
arguments. It is the use of APL's very general indexing in this
oversimplified fashion which adds additional inefficiency not

found. in the. + .primitive's accessing the data.
4.4 Scalar Functions. Extended to Matrices

When attempting to model the application of,a.dyadicpscalar
primitive to rank 2 arrays there are two wayé to proceed: One
way is to ravel the arguments, use a function having the form of
ADD from Section 4.3 to perform the scalar dyadic functién and
then reshape the result. Although this is in effect whaf APL
does, we chose to simulate the primitive applied to a matrix in a
FORTRAN-1ike manner, by nested loops. The reason for.adopting
this approach was to try to get additional insight into the
overhead of repetitive looping in APL. For square matrices we
would expect strong correlation to. between the .quadratic. term of
an approximating polynomial in this case and the linear.component
.in the preceeding case. To carry out this investigation matrices
of the form

(17)

squareq

VvV MN <« GEN N
[1] MN <« (H,N)pr NxN
v
were generated for ¥ =1, 2, 4, 10, 16, 20, 24, 28, 32 and 36.
Each of these was then added to itself by using the function MADD
VZ < A MADD B;I;Jd

(1] Z « (pd)pO0
[21 I <« 1
[3] L1: J « 1
[4] L2: ZEI;J] « A[I;J] + BLI;J]
(5] > ((J«J+1) < “14pd) /L2
(61 > ((I«I+1) < 14p4)/L1
v

Once again DOMINO was used to perform least squares fits to the
data for both + and MADD for polynomials of the first,
second and third degree. The coefficients as well as the sum of
squares between the data and the approximating polynomials may be

summarized by the following table.

DEGREE OF POLYNOMIAL

1 2 3
+ MADD + MaDD | |+ MADD
a, T3.243 7331.9 1.802 | 2.487 1.985 3.950
a, 0.623 92.07 || “0.1550 | 1.300 0.2187 | 0.4697
a, | - , - 0.0167 | 2.779 0.0201 | 2.855
a; | - - - - 4.748E 5| 1.600E 3
sum | 156.0 4162E5 7.946 | 11.36 7.787 8.537
of
TABLE 4.4

The linear fit is rejected immediately not only because of the poor
fit denoted by the large sum of squares but also because the

negative intercept is misleading in terms of predictive use of the
(18)

model. It does indicate the strong dominance of data points
away from the origin requiring a polynomial. of higher degree to
model the behavior of the functioms.

A comparison of the second and third degree fits indicates
that the cubic coefficient in the polynomial for + accounts for
little in reducing the sum of squares in the least squares
approximation. Over the range of interest for n (1 < n < 36) the
contribution of the cubic term only approaches the size of the
constant term. The third order term plays a larger role in
creating a model for MADD.

The similarities between a, in + with vector and matrix

0
arguments and for ADD and MADD and the similarities between a

for ADD and + applied to vectors and a, for MADD and + '
applied to matrices, lead us to consider the quadratic approximation
for + and MADD for matrix addition.

The negative value of coefficient as for + applied to
matrices is worthy of comment. It implies that the slope of the
approximating polynomial is negative for n < 4 and positive for
n > 4. This probably reflects the inaccuracies of the
neasurement process for small n.

If we consider the two models, 0.0167x2 - 0,155x + 1.802 for
+ and 2.779x2 + 1.3x + 2,487 for MADD we would expect
behavior for large x to be as the ratio of 2.779 to 0.0167 or
about 167 to 1. Yet over the range of fit with n = 32 so that
n2 = 1024 the two polynomials evaluate to numbers having a ratio
of about 208 which agrees closely with the ratios of slopes from

the linear model derived in the previous section.
4,5 Summation

Within the scope of simple constructs such as reduction, inner
products and extensions of scalar function to vectors and arrays
of higher rank, there is evidence that APL is competitive with
FORTRAN when we restrict the size of the arguments to being small

(19)

or at least reasonable with regard to the size of the defacto
standard workspace of 36K bytes. To achieve advantage where it
exists,coding in APL must exploit the array capabilities of the
language. In general FORTRAN-like constructs must be reformulated
to produce good code for the interpretive environment under study.
Replacing looping with array structure, in general, and in the
particular cases examined here,may be faster than FORTRAN like
coding in APL by a couple of orders of magnitude.

For good APL code and in simple constructs such as given
here APL can beat the execute times of FORTRAN and is, in
extreme cases, no worse than an order of magnitude slower. In
fact speeding APL up by a factor of 2 or 3 by techniques which
would not show an equivalent gain in compiled code would make
interpretation in this context quite comparable with FORTRAN
execute times,

APL code is 8 to 10 times more compact although there is a
much higher penalty for data because of the dynamic size of data.
The size of the runtime package of FORTRAN greatly reduces the
severity of such problems when comparing the two.

The times charged to APL do carry a proportion of the
overhead of supervisory tasks as well as language. function such as
interpretation and elaboration. These same figures are.usually
not considered in the same light when judging the batch
environment but they must be paid for somewhere. On the other
hand, the space taken up by a FORTRAN program provides for the

data, but often some space is overlayed and other is in COMMON.
5.0 MATRIX INVERSION AND LEAST SQUARES TECHNIQUES

The second area of consideration is that of matrix inverse
techniques. This was prompted because routines for matrix
inversion have been of demand and standardized to the extent
that a variety of algorithms for that task are usually available

(20)

in scientific subroutine libraries for.the. FORTRAN batch.environment.
Also, the availability .of APL 's DOMINO (B) function in TBM's
Program Product APL\360 =-0S (5734-XM6) and APL\360

-DOS (5736-XM6) invite comparison both within APL and between
APL and FORTRAN. Documentation for DOMINO may be found in
papers by M.A. Jenkins [6,7], in which he describes.DOMINO. He
includes a number of meaningful examples in the IBM Technical
Report [6] which were examined and measured on Syracuse
University's APL\360 system under SUOS. 1In addition 3 x 3
through 12 x 12 Hilbert matrices and a 6 x % All matrix from

P 139 of a text by J R. Westlake [8] have been timed and compared
to their known inverses.

In addition to these comparisons Domino was compared to its
simulation in APL }as given in [6]. DM@ simulates the dyadic
form of B and MMD the monadic case. To give comparison to
DMD and MMD both the Gauss-Jordan, GJINV , and the Causs-
Seldel GSINV algorithms were programmed in APL. Examples of
these algorithms in APL may be found in Hellerman [9] on pages
60-62 and 63-64 r@spectively.

The comparabﬂe FORTRAN tests were made with MINV of IBM's
Scientific Subrottine Library.and which calculates inverses for
REAL*4 data. Tests using the.double precision version DMINV
were initially, inconclusive and after consideration . of results
similar to that Previously seen when comparing REAL*4 and REAL*8
execution furF er. consideration was abandoned., In MINV the
Gauss-Jordan method is used with the determinant also being

caluculated.

|

5.1 Results: \

J \
Denote the cases by the following APL statements or their

equivalent fitatements with the time in 60's of a second.
i

(21)

1

2)

3)

4)

A<~ 3 3 p 4853927102

B +« 305 97 114
a) BBA
b) (BA)+. xB
c) (T+.xB) B (T<«®4)+.x4A
d) B DMD 4
e) (MMD A) +.xB
£) (GJINV A)+xB-
g) (T+.xB) DMD(T+®A)+.%A
h) (MINV A)+.xB
(in FORTRAN)

B « 3 2 pl05 72 97 56 114 87

A as before
a) BEA
b) (B 4) +.xB
¢) (T+.xB) B (T«84)+.%4
d) B DMD A
e) (MMD A)+.xB
f) (not used)
g) (T+.xB) DMD (T«®4)+.xA
h) (MINV A)+.xB
(in FORTRAN)

H3 <« + "1+ (13)e .+ 13
a) B H3
b) MMD H3
c) GJINV H3
d) MINV H3
(in FORTRAN)

H12 « +71#(112) o.+112

a) @ H12
b) MMD H12

c) GJINV H12

d) MINV H12
(in FORTRAN)

(22)

4,2
4.8
104.6
104.4
54.2
104.8
17

3.6
4,2
102.4
104.8

99.8
18

2.6

107.6

52.2
17

38.4
525.4
679.8

50

(751 CLG)

(789 CLG)

(686 CLG)

(769 CLG)

5) M« 6 6 p 1 0 0 0 01
11 0 0o 01
i+ 1 9 o1
1711 1 071
1171 1 11
171 171 171

a) &M 7.2

b) MMD M 199.0

c) GINV M 173.2

d) MINV M 26 (707 CLG)

(in FORTRAN)

In each of the cases where we refer to the FORTRAN figures
CLG stands for Compile Load and Go.

If we compare (a), (APL times for the monadic use of H),
and (d) (FORTRAN MINV times) for cases 3, 5, 4 as sample points for
the inversion of matrices of order 3, 6 and 12 we see that APL
out performs compiled FORTRAN, The trend of the data appears that
at some point the APL times will exceed those of FORTRAN. If
we fit quadratic equations to both sets of times in order to
get a rough idea of the form of the function, we find that APL
times would be approximated by

0.4074 n? - 2,133 n + 5.333
while the FORTRAN times follow the form of

0.1111 n® + 2a + 10.
The APL predicted (and measured) times agree closely with the
times reported by Jenkins [7] (p. 384), and based on solution of
the difference of the two approximations the cross over point is
about n = 15.

Jenkins also notes in [7] that for matrices of order greater
than 15 DOMINO runs faster in APL than the matrix multiplication
of two matrices of the same order.

It should be noted that these estimations are based on
quadratic fits while in general we expect matrix inversion routines

to have run times which are proportional to cubic functions of

(23)

the rank of the matrix. While the number of multiplications
(and divisions) and additions grows cubically, the other forms of
overhead such as the number of times which the looping routines
are called grows quadratically. These approximations .then can
only give an indication of how the relative overheads behave.

The size of the FORTRAN program sizes.and load module sizes

for each of the pertinent cases are

CASE PROGRAM LOAD MODULE
SIZE (bytes) SIZE (bytes)
1 396 22,864
2 454 22,920
3 274 22,744
4 1044 23,512
5 412 22,880

The APL functions GJINV and GSINV require 488 and 364
bytes respectively. The APL function DMD, MMD, and LS which
are used to simulate @ require a total of 1804 bytes.

The FORTRAN load module sizes given above include 22,468
bytes for 10 FORTRAN routines including MINV from the Scientific
Subroutine Package. ,

We have not made mention of the APL function INV (or JINV)
found in 1 ADVANCEDEX on the APL\360 system. Jenkins
figures[6,7] compare that routine to [and we do not repeat the
results here, except to say that the results are roughly
comparable to those obtained for GJINV and &.

In terms of the added function of least squares techniques
available in H and DMD, MMD, and LS we note that for

AA + 5 2 p 1112131415
BB < 1.999 3,002 4.001 4,899 5.998

we have the following times (in 60's of a second)

(24)

BBEAA : 2

BB DMD AA 78.4
(B44) +.xBB 3.8
(MMD AA) +.xBB 83.4
(T+.%xBB) (T<QAA) +.x44 3.6

(T+.xBB) DMD (T<+®AA) +.x4A 76.2
No least squares techniques coding for FORTRAN was produced. When
considering the use of iterative techniques .like the Gauss-Seidel
method, we consider

W <« 4 4p 41 2 3 4 2 13 4 5 3

4 15 6 4 5 6 17
R« 1111
‘ Times in 60's of a second
REW 3.4

R DMD W . 149.4
R GSINV W 389.4
(14 iterations)

(BW) +.xR 6.2
(MMD W) +.%xR 155.4
(GJINV W) +.xR 102
(T+.xR) B (T<QW) +.xW 6.8
(7+.R) DMD (7« 8qW) +.xW 156
(T+.xR) GSINV (T«<QW) +.xW 1041.4

(38 iterations)
No FORTRAN coding corresponding to the Gauss-Seidel method (GSINV)
was produced; comparison times using GJINV are shown, since that

is the technique comparable to MINV,
5.2 Summary

From the above we may conclude, as Jenkins did, .that DOMINO is
much faster (and more accurate) than the matrix inverss routines

written in APL. When solving linear equations (or systems of

(25)

equations) having the form
AX =Y
in traditional matrix notation, you should perform X <« YHA
rather than
2y
as expressed in the form
X « (B4) +.xY.

That is, never use the monadic form when the dyadic use is
intended.

For matrices of size less than 15 x 15, even using the monadic
form of DOMINO tﬁe, time to invert a matrix is less than the
time to execute a comparable program written in FORTRAN H, OPT = 2,
When the times to compile and load and.go are.considered,

DOMINO becomes even more competitive. We do not attempt to say
how much more competitive because that would.depend .on how many
matrices are inverted when a routine is compiled, scheduled, and
executed. That depends on the application or more correctly a
broad sample of applications. v

In terms of size the codestring Z <« BEA takes up about 24
bytes and a dyadic function with the above as the definition
would take up 64 bytes. Thils compares to some 400 or so bytes
for the FORTRAN program. The load module size should of course
be compared to the some 88,000 bytes required.by the APL
interpreter a small portion of which is of course the code for

DOMINO.

(26)

6.0 CLOSED PARTITIONS ON THE STATES OF FINITE STATE MACHINES

A partition, m, on the set of states of a finite state
machine,

M= (S,1,0,8,1,8,), is a collection of disjoint subsets
(blocks) of the set of states,S, whose set union is S. A
partition is said to be closed, or have the Substitution
Property'(SP), if and only if for each input a € I, the set of
inputs, maps blocks of m into blocks of w. That is,

B (s) = B _(t) - B (8(s,a)) = B (8(t,a))
gso that when states s and t, are in the same block of 7 then their
images under the next-state function, &, will also be in the same
block independent of the input, a. The FORTRAN program which was
the initial focal point of this part of the study was written by
Thomas F. Piatkowski [10] for interactive use on the Michigan
Terminal System at the University of Michigan. This program
calcﬁlates all partitions,having the substiﬁution property,of a
finite state machine which is input interactively as part of the
program execution. In addition to the closed partitions enough
informatidh is generated in the output to construct the lattice
of closed partitions for that machine. Each partition is given
together with an identifying number, a measure of its "height" in
the lattice and the type of the point according to whether that
closed partition is a lattice atom, a basic generator, a two-state
generator, or none of these types. A collection APL functions
to perform these same tasks have beem programmed by one of the
authors (GHF) and reported upon elsewhere [11]. The APL
functions are given here as Figure 6.1 and are as they appeared
in [11]. Modularity of the functions are as shown because some
functions were used with yet other applications dealing with
finite state sequential machines. Since that publication the

coding has been improved, but the times and sizes reported here

2n

VINITIALIZELOIY

INITIALIZE; KT8V

1) ‘IUMBER OF STATES, N
r21 a«n
3] ‘IUUBER OF INPUTS, P!
(] Pel)
181 STATEe1SH+0
£61 E+1
7] ‘EUTRR ROWS OF THE ',((S+
T11xS1)4 ' STATEOUTPUT'), * TABLE AS
RROUESTED
£8] 4
9] 11>\ P=pT+ 0
101 =+8,p[«'SIZE ERROR RE-ELTER ROH'
[11] STATE<STACE,T
127 -+axil2k+k+1
£13) =+16x150
[18) ‘ouTPUT FABLE REQUIRED? (YIS, N0)'
[15] =17x1'i'elt
1161 +6x10=8l/+~SW
£17} +20x(pSTALE)=HxP
[18) OUR«(i,P)pO
[191 =21
[201 0oUP«(i,P)p(iWxP)+STATE
[211 STATE«(L,P)nSTATE
[221 pRIpe
v
vspLOlv
V 8P IJI3J:TM;CC3G2;N2;K:3B3T50;Q:5Q
[11 c¢oLs
(2] G2«(N2,0)4((N2+21N),1)p0
(3] K+1
(4] L1:62[K;IJ0K;1]«1
[5] +LixiN2zX+K+1
(6] k+1
[7) L2:B+1
(8] L3:7+5TATEL(G2(K;1=B}/IN;]
€3] L+1 -

101 Lu:+L5x1v/0=Q+«G2[k;T(;L])

{11] +06,G2[K;703L1)«1+T/G20K;]

[12] L5:>L6x1{{pQ)=pS5Q)Ar/SQe145Q+(Q=0)/Q

{131 L7:620K;((Q=0)/T(:L1),(C2[K;JeSQ)/INI«B+L/5Q

(1u% Gz[K;]«GZ[K;]-Q*/((Q*G2[K:]t0)/c2[K;])°.>(SO*B)/SQ
[15] =L2

{16]) Lb:+Lux1P2L+L+1

[17] +L3x1([/G20K;])2B+B+1
[18) =L2x1N22K+K+1
(19] K+1

[20] L8:G2[K;1+«NORMALIZE G2{K;]

[21] ~L8x1022K«K+1
[22] G2+G2L¥[/C2;)
[23) B«G2A.=8C2
[24] COMPRESS

[25] PP«

[26] LEVEL«L+0

(271 L10:Q+(S¢+0=VFB)/11+pB+«ORDER G2

(28] PP«PP,,5G#G2

[29] LEVEL«LEVEL,(+/SQ)pL+L+1
[30] =~+L1ux11=pQ

[31] I+«1

[32) Lit:J+I+1

£33] L12:+L13x1v/G2A.=T+G2(Q[I1;] 504 G2[QLJ1;]
[34] G2«(1 0 +pG2)p(,G2),T

[35] L13:+L12x1(pQ)2J+J+1

[36] =+L1ix1(pQ)>I«I+1

[37] Lit:G2+(~(114pG2)eQ)FG2

£38] +L10x10<x/pG2
[39]1 PP«(((pPP)+H},N)pPP
[4¥0] K+0

[u1] L15:K;' ' LEVELL1+K];" ' PET 1+K

(423 ~+L15x(1+pPP)>K+K+1
v
L]
vCOLStUlv
9 COLS;TM;CC
[1] IJ+8(2,0.5%pIJ)pIJ«(I+TH/ ,&CC) I« (TH« INo, <IR)/ ,CO-(H N)pIN+ N
v .
VNORMALIZELD3V 9COMPRESS{0IY
v S+NORMALIZE V;K:iP;QiTiIN V COMPRESS;T
{11 S+«{pV)pk+1 R (1] T+10
[2] Pe1tQeIN«1pV 21 k+1
[£3} S[T+(VeV{14Q1)/IN]+P [3] Q+114pB
{41 P+P+1 [4] T+7,620BlK;1115])
[53 Q+(~QeT)/Q [s5] K«K++/BLK;]
[6] +3x10<pQ (el >ux1K<2!N
v 7] G2+ (({pT)tN) ,R)oT
v
YCOVERLUIV vsuMILO19
v 5+X COVER I R:;7;Q:K V R«I SUM J;K:iB;CiIN
11 Rl /X[Is) 1] +0x1(pI+,I)*pd+,J
[2] SeI=i(K+1)tpX _ [21] IN+1pR+(pI)p0
31 +5x11zpP«(X[T3J=K) /1" 14pX (33 K+1
[4] 5+5An/Q=14Q+X[;T] (4] S1:B«{((TeIlK1)/IN) U(JeJLK])/IN
[s] ~3xR2K+K+1 (51 52:C«B U((IeILBI)/IN) U(JeJIB1)Y/IN
v [6] +S3x1(A/CeB)AA/BeC
. {71 +52,B+C
vERT(O]1V £8] S3:R{BJ+X
[9] +S1x1(pR)2K+R1 0
¥ Z+PRT K;A;BiC:IN [10] R+«NORMALIZE R
[11 CettIN+\N v
[2] 2Z+10
[3]1 B+[/PPLK;]
(8] 2«2, ' (', ((1,(2x"14pA)p © 1)\A+ALEH1[1+(PP[K;1=C)/IN]),")3"
[5) ~4x1B2C+C+1
[6] Z+T142

FIG6. 6,1
SP FuncT1ONS

28)

INITIALIZE
NUMBER OF STATES N
0:

8
NUMBER OF INPUTS, P

2
ENTER ROWS OF THE STATE TABLE AS REQUESTED

1
0O:
a7
2
0
4 8
3
0:
16
Y
o: '
25
5
0:
2 u
6
0O
13
7
0:
Uy
8
0:
33
OUTPUT TABLE REQUIRED? (YES, I0)
o
11 2
A lC,- G,-
B |D,- H.-
¢ lA,- F,-
D |B,- E,-
E |B,- D,-
P lA,- C,-
G |\D,- D,-
H IC,- Cy*
sp
0 o (4): (B (C)i (DY (E); (F);(G); (H)
1 1 (A3 (BYi(C F)s(D); (8D (C)i(H)
2 1 (AY;(B):(C);(D E); (F); (G)i(H)
3 1 (4 BY;(C DY;(E F); (G H)
4 2 (4B CDI(EFGH)
5 2 (A);(BY; (C F)i(D BN (G (H)
3 3 (A B);(C D EP;(GH)
7 4 (ABCDEFGH)
VORDERLOIV
v P+ORDER Y;I;J
(1] P+10
(2] Je(I«1)tpY
€3] P+P,Y COVER I
f4] +3x1Jalel+1
{s] P«(20d)0P
v
vuLole
VIeX U Y
(1] 2+2[4Z«Y,(~XeY)/X]
v
YPRINTTIIIIY
v PePRIET;0; 0, IP
[11 P«(5xP)p 1 0 0 0 0)\ALPIAT1+27ArrY
[2] Tl 3240«5x 14T PePlet .
raj [33+01«ALPH2T 14007]
Ty Tel~ 2 3 +pT)27
(5 TL1;7145xIPVALPIHT 2477
06) TL24TN;1)«ALPHAT 1470w
[7] TC;3l«'y?
r8) or2;)«'-"
v

are for those functions as shown in Figure 6.1.

The FORTRAN program [10] together with the APL documentation
[11] were givén to another of the authors of this.report (HAES)
with instructions to start with the FORTRAN program, determine
how it worked, get it running on Syracuse University c omputing
facilities, write one or more programs or collection(s) of
functions in APL to produce results which were, it was hoped, as
good as, 1f not better than, the APL functions cited above.
Finally, comparisons among the cases: FORTRAN, his APL functions
and SP from Figure 6.1 were to be made.

These efforts are discussed in the next section with the
results given in the section following that.

It should be noted that at the time the programmer (HAES)
began, he knew neither FORTRAN nor APL but he did know ALGOL.
Also, it was not trivial to say '"get the program running" because
between 1967 and 1971 and between the compiler implementation
available to Piatkowski on the Model 67 at Michigan and the one
available to Spaanenburg on theiMbdel 50 running under SUOS at
Syracuse changes had been made in the FORTRAN compiler so that
alterations had to be made to WRiTE and FORMAT statements in

order to get the program to run.
6.1 Translating from FORTRAN to APL

In the following an effort is made to enable the reader, who
is familiar with the algorithm, to follow the FORTRAN program and
the APL functions; however, additional background material may
be found in Hartmanis and Stearns [12].

Figure 6.2 shows an annotated Flow Chart of the FORTRAN
program as it appeared in [10]. 1In that program TPl and TP2 are
two linear arrays in each of which temporary information on a
single partition may be stored. The format for TPl and TP2 is

the same as for a single PP array segment which we consider next.
(29)

START

N, P, FS=TABLE;
PRINT NAME,
N, P, FS-TABLE

PRINT TITLES p
AND ROW ZERS

©F LATTICE

2Ol
LEAD ZERQ PAR-
“TIT\ON INTO PP ‘
ARRAY , LABEL AS
LD PARTITION;
ZERD OUT 852,
ARRAY -

| ADD ALL 2-STATE.
'GENERATORS O

PP ARRAY AS FUTURE
PARTITIONS -

- 1
| READ NAME, \)

MARK. IN PP ARRAY:

{PRESENT PARTITIONS) =
MIN{FUTURE PARTITIONS]

10
MARK. ALL PRESENT

PARTITIONS AS LD

.

ADD ALL NEW PAIR SUMS
OF PRESENT PARTTTIONS
TO THE PP ARRAY AS
FUTURE PARTITIONS

ﬁ —{(8)

NeTI
®
SCAN PP ARRAY, NUMBER. T ..
AND PRINT PRESENT -

. S) .
JR=43 NP:=0.

SCAN 2-STATE JG)

PARTITIONS ALBNG WITH
SUCCESSORS AND NON-
SINGLETON BLOCKS})

UP-DATE S2 ARRAY;
CHECK IF PARTITION ,
. BEING PRINTED |S THE .

GENERATORS, LABEL
BASIC GENERATERS,
LABEL LATTICE

ATOMS AS PRESENT
PARTITIONS |

10ENTITY T

2
: 12
PRINT S2 ARRAY CP

.. FO

PR .

| FIG 6.2

T

PP, in which the permanent partition information is stored, is
also a linear array. Each partition occupies a segment of length
N + 4 in PP where N is the number of states in the machine under

consideration. The segment is coded as follows:

— RANK Size
~1- old partition Number of blocks
0 - present partition in this partition

> 1 - future partition

[—7{N elements coding
| the partition

Number Type

< 0 - temporary 1D 1 - basic generator
= 0 - zero partition 2 - two state generator

> 0 - final ID 3 - none of the above

cells 5,6 ...N + 4 contain coding for the partition. The i + 4th
cell marks the block of state i. Two states are in the same
block if and only if their cells contain the same number. When
the partition is in normal form, cell 5 corresponding to state 1
will contain a 1. The lowest numbered state which is not in the
same block as state 1 is marked with 2. The address of the
segment corresponds to the location of the N + 4th cell. 1In
APL a normalized partition the number of blocks would be given
by [/PP removing the need of SIZE. PPM is the index of the
last cell of the last partition in the PP array. One of the
phifosophic problems is that PP could have been stored as a
matrix but keeping PP a vector and being somewhat more
independent.of N is of value when running a numbef of problems
interactively and in attempting an optimization of allocated
storage in the compiler environment. This trade-off slightly
complicates the uﬁdefstanding of the program however.

S2 is a two-dimensional array and §2(1,J) is the number

(either temporary or final) of the two-state generator partition

(31)

obtained by placing states I and J (and only those states) in the
same block. If S2(I,J) = 0, then the partition is not yet known.

The following subroutines appear in the FORTRAN program and
hence play.an important role in the APL implementation.

SUM(N,TP1,TP2) is a subroutine which places the sum (the lattice
function for partitions) of TPl and TP2 into TPl.

REDUCE(N,P,FS,TP1l) is a subroutine which replaces the partition
in TPl with the smallest partition in SP which contains it.»’

NORSIZ(N,TP1)is a subroutine which normalizes and sizes the
partition given in TP1.

EQUAL(N,PPM,TP1,PP,LEQ,PPEQ) is a subroutine which scans the
partitions in PP and compares them with the partition in TPl we
set.

1 if a match is found
LEQ « {0 otherwise

If there is a match PPEQ in the address of the PP-partition
identical to the TPl partition. All partitions must be normalized

and sized.

LESS(J,I,N,PP) is a logical function whose value is .TRUE. if and
only if the partition at location J in PP is less than or equal
to the partition at location I. '

Figure 6.3 which is continued on a number of pages.shows both
the FORTRAN program and a collection of APL functions which
comprise the FORTRAN to APL translation efforts. The FORTRAN
program contains notation along the left margin; the numbers
denote segments of the program corresponding to the numbers on
the Annotated Flow Chart of Fiéure 6.2. Located near the
appropriate section of the FORTRAN program are (usually) three
APL functions having the name format of FNO, FN1, and FNX.
These are grouped in three groups. The first list in)GRP ZERO

(32)

YGRPS

FIRST XXXX ZERO
JCxE ZERO
I.ITIALIZS SP 5P10 8P200 SP30
SUM REDUCE NORSIZ EQUAL LESS PIAT
YGRP PIRST
INITIALIZE S$P1 5P11 S§P211 SP31
SUM1 REDUCE1 NORSIZ1 EQUALY LESS1 PIAT1
YGRP XXXX
IRITIALIZE SPX SP1X §P2XX SP3X
SUMX REDUCEX NORSIZX EQUALX LESSX PIATX
YPIATLOIV
v PIAT
(1] INITIALIZE
[2] sp
(31 spP10
4] 5P200
(s] 'WEW MACHINE (0=NO , 1=YES)?°®
L6l -0)
v
VPIAT1LO1Y
v PIAT1
{1} INITIALIZE
[2) sp1
(31 sP11
[4] sP211
[5} 'NEW MACHINE (0=NO , 1=YES) 7'
el =0
v
VPIATXLO1V
v PIATX
(1} INITIALIZE
[2] srx
[31 sp1x
[4) SP2XX
£s) 'NEW MACHINE (0=NO , 1=YES) ?'
{6] =0
v
VINITIALIZELODY
v IRITIALIZE
[11 '5P LATTICE PROGRAM'
{2] YMACHINE NAME ?'
[3] NAME«{
(4] SF504:'NUMBER OF STATES , N '
sl i+l
[6] ~+{(0<kx101-N)/SP1004
[7] ‘N OUT OF RANGE'
[8] +5P504
[8) &5P100A4:'NUMBER OF IWPUTS , P'
[10] P<{
£111 +(0<Px6-P)/SP150 -
[12] ‘P OUT OF RANGE'
[13] +5P100A
[14] SP150:'STATE TRANSITION TABLE:'
(151 'FOR EACH I ENTER ';P;' KWUMBERS (sW)®
[16]1 'CORRESPONDING TC FS[I;J1 FOR J=1 T0 ';P
[17] FS«(H,P)p0
[18] I+1
[19] 582004:'I= "1
[20] F3LIWPI+0
{213 +(W2I«I+1)/SP200A
(221 *°*
{23) 16o'-!
[24] ' !
[25] 'MACHUINE NAME = ';NAME
[26] 'H= ';H;! P= ';P
[271 *
[28] 16p'-"*
(201 ' °
[30) ' Zalk TRANSITIC. Talis'
iy v
3L ' INpUTS'
[33] ‘STATE VP
[38) ' °*
[35] I«
[36] SP230A:I;" *3FSLIWP]
[37] -+(N2I+«I+1)/5P2304
[38] ' *
[38] 16p'-"*
(w0l ' '
(411 'LATTICE TABLE'
[42] 'CODE: A = LATTICE ATOM®
fu3l ¢ B = BASIC GENERATOR'
[uy] * 2 = PWO-STATE GENERATOR'
[us5] * °
{u6] 'WO. ROW TYPE®
[s7] ' o 0 ZERO'

SPuo

SP41

SPuX

SPSO

SP50

SPSO
. 10
3 20

30
40
50
60
70

80
Q0

100
110

120

130
140

150
160

170
171
172
180
190

200
210

212
213
214
220
_221
230
240
250
251
252
253
260

270

FI6. 6.3

IMPLICIT INTEGER®*2(A-2)
REAL*8 TYPE

~ LOGICAL LESS
DIMENSION FS{100,+5) \NAME(S0),PP{5000),52(100,100)
DIMENSION SUCC(100),TPL(104),TP2(104),TYPE(4)

DATA TYPE/'AB2',!
WRITE(3,10)
FORMAT(//19H SP LATTICE PROGRAM)
WRITE(3,30)

B2',' 2%, v/

FORMAT(//40H MACHINE NAME? (TYPE UP TO 50 CHARACIEKS})

READ(1,40)NAME

FURMATI(50A1)

WRITE(3,60)

FORMAT{/44H N?(TYPE & 3-DIGIT NUMBER
READ{1,70)N

FORMAT(13)
IF(N*(101-N))80,80,100
WRITE{3,90)

FORMAT(17H#*%*N QUT OF RANGE)
GO 70 50

WRITE(3,110}

FORMAT(/42H P?2(TYPE A 1-DIGIT NUMBER IN RANGE 1 TO 5))

READ(1,120)P

FORMATI(IY)

IF{P®(6-P))130,130,150

WRITE(3,140)

FORMAT{1TH**2P QUT OF RANGE)

GO TO 100

WRITE(3,160)

FORMAT(//24H STATE TRANSITION TARLE:)
WRITE(3,170)P
FORMAT(16H FOR EACH
WRITE(3,171)
FORMAT(24H SEPARATED BY COMMAS AND}
WRITE(3,172)

FORMAT{25H CORRESPONDING TO FS{1,J4))
WRITE(3,180)P

FORMAT(11H FOR J=1 TN,13)

00 200 I=1,N

WRITE(3,190)1

FORMATI/5H I = ,13)
READ(14210)(FSI14J)sJ=1,+P)
FORMAT(S(13,41X)}

WRITE(3,213)

WRITE(3,10)

WRITE(3,211)NAME

FORMAT(/16H MACHINE NAME = ,50Al1)
WRITE(3,212)N,P
FORMAT(/5H N = +I3,5X44HP = 413)

WRITE(3,213)

FORMAT(/40(1H=))

WRITE(3,214)

FORMAT{/23H STATE TRANSITION TABRLE)
WRITE(3,220)(1,1=1,P)
FORMAT(/12X, 6HINPUTS/6H STATE,2X4515)
WRITE(3,221)

FORMAT(LH)

00 230 I=1,N
WRITE(3,240) 14 (FSII4J}yd=1,P)
FORMAT{14,4X,515)

WRITE(3,213)

WRITE(3,250)

FORMAT(/14H LATTICE TABLE)
WRITE(3,251)
FORMAT(/26H TYPE CODE:
WRITE(3,252)
FORMAT (12X, 17HR=BASIC GENERATOR)
WRITE(3,253)
FORMAT(12X,21H2=TWO-STATE GENERATOR)}
WRITE(3,260)

A=LATTICE ATOM)

FORMAT(/15H NO. ROW TYPE)
WRITE(3,270)
FORMAT(/15H O o ZERQ)

TRANSLATION STEPS

133)

IN RANGE 1 70 100))

1 TYPE,12,16H 3-DIGIT NUMBERS)

{11

(2]

£33

4]

(5]

[6]

(71

[¥:3]

9]

{10]
{11]
[12]
£13]
[14]
[15]
[16]
[17]
(18]
[19]
£201
[21]
£22]
[23]
[24]
{251
{26]
[27]
[28]
(23]
{301
[31]
[32]
£33]
[3u]
£3s]
£36]
[37)
[38]
[39]
40}
fu1]
[u21
Lu3l
[u4]
[45]
(48]
{471
[48]
[wg]l
{501
[51]
[s21]
£s3]
Isu]
[551]
[s6]
(571
(58]
[59)
[60]
{611
(621
[63]
[6u]
£65]

(1]
[2]
[3]
[4]
{s]
(61
£7]
[8]
[9l

[10] SPu30A:+((J=I)vPPLI-N]2PP{J-N1)/SPu30

113
(123
[131
[14]
[15)
{18]
[(171]
(18]
[19]
[20]
(211
[22]

YsPLOIV
SP
N3«W+3
NueN+y
PPM+NY
PN+"1
PP«Nu4p0
52«(H,N)poO
PP[1])+1
prP[21«0
PPL3]+3
PPLu]eN
I+l

S12804:PELT+u]I

JeI
SP2808:52(I;Jd]«0
+(N2J+J+1)/5P2808
+(NzI+I+1)/5P2804A
TP1+Nu4p0
TP2+l4p0
I+l
SPuQ0A:J«I

SPU400B:+(I=J)}/SPL00

v

A+«l
SP290A:TP1[K+u4]+X

+(W2K+K+1)/5P2304A

TP1ld+ul«l

A<l

SP3704A:+(FS(I;X1<FS[J;K1)/5P298

+(FS[I;K)=F3(J;K1)/SP300
527«S2[FSLJ ;K] FSII K1)
+5P299
5P298:527«52[FSLI;K1;FSLJ:K]]
Sr299:+(S52T=%0)/5P320
SP300: M+l
SP310A:TP2[M+4]+M
+(lzM+M+1)/SP3104
TP2{FS[(J;K1+4]+FSLI;K]
+>5P360 .
SP320: M«2
SP340A:+(PP[M1=52T)/SP340
HT«M-2

+5P350
SP340:+(PPeM«M+H4) /SF3404
SP350:M«5
SP355A:FPP2(MI+PP(HUT+M)
+(Nu2M«M+1)/5P3554
SP360:SUM
+(P2K+K+1)/SP3704
REDUCE

NORSIZ

EQUAL

+(LEQs0)/5P390
S2LI;J1«PP{PPEQ-N+21
+5Pu00

SP390: PP«PP,N4p0

K+y

SP395A4: PPLPPM+K}+TP1(K]
+(N42K<K+1)/5P3954

PP PPM+3}+2

PPLPPH+2)«Pl

PPLPPl+1]+0

520 I;J71+PN

PN+PH-1

PPH«PPM+NY4
SPu00:+(N2J+J+1)/SPu00B
+(N2I+«I+1)/SP400A

vsp10L0Odv

SP10
R«l
p«0o
N2+8+2%xN
I+N2
SPU70A:d+1
SP405A:TPilJ+u}«d
+(HzJ«J/+1)/SPu0OSA
5+0

JeN2

+(~J LESS I)/S5P430

S+1

JT+J-N4

K+5
SPu204:7P2{K1+«PPLJT+K]
+(Nu2K+K+1)/SP4204

SUM
SPu30:+(PPHM2J«J+N4)/SP4304
+(5=0)/SPuS0

NORSIZ

PPLI-N+3]+"1
+(TP1[4)=PP[I-N]1)/SP470

(23] SPus0:PPLI-N+1]+1
{241 SPu70:>(PPMzI+I+N4)/SP4704

v

g

FI6, 6.3
CONTINUED
134§

271

PP{1)=1
PP{2)=0
PPI3)=3
PP(4)=N
N3=N+3
Na=N+&
PPM=N4

PN=-1

DO 280 1=1,N
PPUI+4)=1

DO 280 J=1,N

280 S2(1+J)=0

290

297

298
299
300
310

320

340
350
355
360
370

380

390
395

DO 400 I=1,.N

DO 400 J=I,N

IF(1.EQ.J4) GO TO 400

DO 290 K=1,4N

TPl{K+4)=K

TP1iJ+4)=]

DO 370 K=1,P
IF(FSUTLK)-FS{JsK)) 298,300,297
S2T=S2(FS(J+K)}FS{I+K))
G0 TO 299
S2T=S2{FS{I+K)4FS{JeK})
IF(S2T) 320,300,320

D0 310 M=1,N

TP2(M+4)=M
TP2{FSUJK)+4)=FSIT4K}

GO TO 3560

DO 340 M=2,PPM,N4
IF(PP{M)-52T) 340,330,340
MT=M-2 .

60 10 350

CONTINUE

DO 355 M=5,N4
TP2(M)=PP(MT+M}

CALL SUMIN.TPL,TP2)
CONTINUE

CALL REDUCE(N+P,FS,TP1)
CALL NORSIZ(N,TP1) .
CALL EQUAL(N,PPM,TP1,PP,LEQ,PPEQ)
IF{LEQ) 390,390,380
$2(14,J)=PP(PPEQ-N-2)

GO TH 400

DO 395 K=44N4
PPIPPM+K}=TP1(K)
PP{PPM+3})=2

PP{PPM+2)=PN

PP(PPM+1)=0

S2(14+J)=PN .

PN=PN-1

T PPM=PPM+NG

%00

40

e]

420

440

450
470

CONTINUE

R=]

NP=0

N2=2%N+8

DO 470 I=N2,PPM,N4

00 405 J=1,N

TP1{d+4) =y

5=0

DO 430 J=N2,PPM,N4
TF{JLEQeILORPPLI-N) LGELPPII=-N)) GO TO 430
TFLNDT.(LESS{J,I,N,PP))) GO TO 430
S$=1

JT=4-N4

DO 420 K=5,N4

TP2(K)I=PP(JT+K}

CALL SUM(N,TP1,TP2)

CONTINUE

1F(S) 440,450,440

CALL NORSIZIN,TP1)
PP(I-N-3)=-1
IF(TPLI4)-PP(I-N)} 450,470,450
PP{I-N~1)=1

CONTINUE

vsp200(03v

v 5P200

[1] SPy71:7+1

[2] SPeu14:>(PP{I)#0)/SP641
{31 wpenpP+1

[4] S«PP[I+1]

[5) Jet

[6] SPS004:K+J

(7] 5P500B:+(520J;K1=5)/5P500
[8l S20J;KI+NF

L9) SP500:+(N2K+K+1)/5P500B
[10] -~ (N2J+«J+1)/SP5004

113 PPLI+1]«NP

[12] IT«I+N3

(13] succeopo

(18] Je1

(15} SP5104:+(PP[J]=1)/5P510
(16] JT«J+N3

(17) +(~JT LESS IT)/SP510

{18) PP(J]+2

[16) SPS10:+(PPM2J«J+N4)/SF5104
[(20] J+1

[21] SP5304:+(PPLJ1=2)/5P530
(22] JT«J+N3

[23] Kk«1

[24] 5P5204:+((PP{K]=2)VvK=J)/SP520
[25] KT«X+N3

(26) +(JT LESS KT)/5P525

[27) SP520:+(PPM2K+K+ln)/5P5204
(28] succ«5UCC,PPlJ+1]

{29) +5P530

[30] 5P525:PPLJ]+1

[31] SP530:+(PPM2J+J+N4)/SP5304
[32] Jet

[33) SP5354:+(PP(J1=2)/5FP535
(343 PpPpPLII+1

(35) 5P535:+(PPL2d+J+N4)/5P5354
[36] ~+(Rx1)/SP550

[37]1 7T+1

(38} -+5P600

[39] SP550:~>(PP[I+2]1%1)/SP570
[403 T«2

[41] =+5P600

[452] SP570:+(PP[I+2]3%2)/5P590
(43} T3

[u4] +5P600

[45) SP590:T+u

[56] 5P600:' ';NP;' ViR ';'AB2 B2
[(3x7-1)+131;" SUCC= ';5UCC

[47] JP+PPLI+3]

(48] J+«t

[+9] SP6LOA:SUCC+0pS+0

[50] K«1

£51] SP630A:+»(PPLI+3+K]#J)/5P630

[52) G&«5+1

[53] SUCC+5UCC,K

[54] SP630:+(i2K+K+1)/SP6304

[55] =(8s1)/SP640
! it BLOCK

[57] SPGuO:+»(JP2J+J+1)/SFPOU0A

(58] =(PP[I+31=1)/5P840

[59] 5P6u41:+(PrhzI+I+K4)/5P6414

[60] SP30

[61]1 SPuo

[62] =5Pu71

[63] SF840:5P50

v
vsP30[01v

v 5P30
[13 ReR+1
[2) I«1
[3] SP7604:+(PPLI]=20}/51'700
Lu] JeI
{5] 5SP7594:+({(I=J)vPPLJ]=0)/5P759
(61 Keu

{7] 5P7204:TP1[K+11+PPLI+K]
(8] TP2[K+11+PPLJ+K]
[9] +(N32K+K+1)/5P7204

(10} SUM
[11] NORSIZ
t121 EQUAL

[13] ~(LEQ=0)/SP759

[14] pp«PP,NUpO

{153 K«

[16] 5P7504:PPLPPH+K]«<TP1(K]

[17] ~+(N42K«K+1)/SP1504

(18] PP[PPM+1]+71

[19] PPLPPM+2]+PN

[20] PH+PN-1

[21] PPIPPH+3]+3

[22] PPM+«PPM+N%

(23] SP759:+(PPM2J+J+N4}/SP7594

[24] SP760:+(PPM2I«I+N4)/5P1604
v

vspuolOlV

v 5Ps0

1] I«1

[2] SP7614:+(PP[I]120)/5P761
[31] PPLI]«1

[4] SP761:+(PPM2I+«I+N4)/5P7614

[5] I+N4
[6] SPB30A:+(PP[I-N3]=1)/5P830
[7]1 JeFu

8] S5P810A:+((PP[J-N3]=1)vI=J)/SP810
C9] +(J LESS I)/5P830
[10] SPB10:+(PPM2J+J+N4)/5SP8104A
[11) PPLI-N3]+0
[12] SP830:+(PPM2I+I+Nu)/5P830A
v 3

L
]

10

1

1

-

FIG, 6.3

CoNTINUED

“t. (35)

471 DD 641 I=1,PPMNG
TF(PPLI)) 6414,480,641
480 NP=NP+1
S=PP{l+1}
00 500 J=1.N
00 500 K=JsN
TF(S2(J+sK)-S) 50044904500
490 S2(JyK)=NP
500 CONTINUE
PP{1+1)=NP
1T=14N3
$=0
DO 510 J=1,PPM,N&
IF{PP(J).NE.1) GO TO 510
JT=g+N3
IF({.NOTLLESS(JT+IToN,PP)) GO TO 510
PPLJ)=2
510 CONTEINUE
DO 530 J=1,PPM,N& .
IF(PP{J}.NE.2} GO TO 530
JT¥=J+N3
DO 520 K=1,PPMyN4
IF{PP(K).NE.2.0R.K.EQ.J) GO TO 520
KT=K+N3
TF{LESS(JT,KT4N,PP}) GO TO 525
520 CUNTINUE
§=5+1
SUCC{S)=PP{J+1)
GO TO 530
525 PP{J)=1
530 CONTINUE
DO 535 J=1,PPM,N4
IF(PP(J).EQ.2) PP(J}=1
535 CONTINUE
IF{R-1) 550,540,550

540 T=1

G0 YO 600
550 IF(PP(1+2)-1) 570,560,570
560 T=2

GO TO 600
570 IF(PP(I+2}~2) 590,580,590
580 T=3

GO TO 600
590 T=4

600 WRITEL3,601INPyRyTYPEIT) {SUCCL{JIyJ=1,4S) .
601 FORMAT(/I3,15¢3XyA3,3Xy5HSUCC:,1014,(/21X+1014))

610 JP=PP(1+3)
DU 640 J=1,JP
$=0
ND 630 K=1,4N
TF(PP{I+3+K)~J} 630,620,630
620 S=5+1
SUCC{SY=K
630 CONTINUE
J¥(S-1) 640,640,635
635 WRITE(3,636)Jy{SUCCIK}+K=1,51}

636 FORMAT{/19Xy6HBLOCK 413,1H:410144(/28X41014))

640 CONTINUE
IF(PPI1+3).E0.1) GO TD 840
641 CONTINUE

462 R=R+1
DO 760 1=1,PPM,N4
TE(PP(1)) 760,700,760

700 IT=1+N3
DO 759 J=1,PPMNG
TF(1.EQ.J.0R.PP(JI.NE.O) GO TO 759
DO 720 K=4,N3
TPLIK+1)=PP (14K}

720 TP2ULK+1)=PP{J+K])

CALL SUM(N,TP1,TP2)

CALL NORSIZIN,TP1)

CALL EOUAL(NyPPM,TP1,PP,LEQ,PPEQ)
TF(LEQ) 759,740,759

740 DO 750 K=4,N&

750 PPIPPM+KI=TP1(K)
PPIPPM+1)=~1
PP(PPM+2)=PN
PN=PN-1
PP(PPM+3) =3
PPM=PPM+N4

759 CONTINUE

760 CONTINUE

D0 761 1=1,PPM,N&
IF(PP{1}).EQ.0Q) PP(I)=]
761 CONTINUE
DO 830 I=N&4yPPM,N4
IFI{PP(I-N3).EQ.1} GD TO 830
DO 810 J=N4,PPM,N4
TFIPPLJ-N3).EQ.1.0R.1.,EQ.J) GU TO 810
IF(LESS(Js1+N+PPI) GO TO 830
810 CONTINUE
PP{I-N3)=0
830 CONTEINUE
GO TD 471

vSP1LOIv

v SP1
1] PPU+NU+1+N3+N+3
[2] Pu+"1

£3] PP+1,0,3,N,\¥
L4l S2«(N,H)p0
{s] TP1«TP2«N4p0

6] I+«1 vSPXLOIY
[7] S5P400A:d«I
L8] S5PuOOB:+(I=J)/SP40Q - v SPX
£9] TP1erPAl 4], ((J-1)4 W), I, (J-N)t W [1) Nu+1+N3«N+4+PN<"1
[10] k+1 [2] PP+«(1,N%)p1,0,3,8,1¥
[11] SP3704:+(FSLI;K1=FS(J3K1)/SP300 (3] S2«(¥,N)pTP1+TP2+Np0
{123 +(02527«82(FSLI;KILFSJI ;K] FSLI;KITFSTI;K11)/5P320 [4] I+l
(13] 5P300:T7P2+TP2[18], ((FS[J;K1-1)4 W) ,FSLI;K1,(FSLJ;K1-H) N [5] SP400A:d«I+1
[14] - +5P360 . [6] SP400B:TP1«(1J-1),I,J+10-J
[153 5P320:TP2«TP2014],PPLu+ (1 N)+4T+Nux"1+({ (PPM+Nu) ,Nu)pPP)[} 7] &«
2115271 [8] SP3704:+(0=52T7+52[FSLI;KILPSLJ;K1:PSUI;KITFSIJ;K11)/5FP320
[16] 5P360:5UM1 (91 TP2«(\FSLJ;K1-1),FS[I;K],FSLJ iK1+ \N-FSLJ ;K]
[17] +(P2K<K+1)/5P370A {101 +3P360
(18] REDUCE1 [11] $P320:7P2+PP(PP[;2]1152T;4+1N]
[19] WorsIzi [12] SP360:SUMX
[20] EQUAL1 [13) ~+(P2K+X+1)/SP3704
[21] +(LEQ=0)/5P330 [14) REDUCEX
£22] 520I;J1«PP(PPEQG-N+2] {151 NORSIZX
t23] ~sruo0 [16] EQUALX
[24] $P390:PP«PP,0,PN,2,TP1[3+14+1] [17] =+(0=LEQ)/SP390
L251 S201;J3+PH (18] S2[1;J1+PPLPPEQ;2])
[26] PHePR-1 191 ~+SPu00
(271 PPii«PPM+NG : [20] SP390:PP«((|PN«PN-1),H4)p(,PP),0,(52[I;J)+PN),2,([/TP1),TP1
28] SP400:+(N2J+J+1)/SPu00B [21] SP400:»>(N2J+J+1)}/SP400B
[29] ~(§#2I«I+1)/SP400A [22] ~((N-1)2I«I+1)/5SP4004
v -v .
vsP11LO1V
v §P11
[1] NPe~R<l v5P1X(O1V
(21 I+i2+8+2xN
[3] 5P4704:TP1+TP1[14],1¥ v SP1X
4] s<0 [1] I+14R«~NP+0
(51 JeN2 [2] SPu704:5«~14TPle\ll
[6] SP4304:+((J=I)vPP[I-N)2PP[J-N1)/5P430 [3] J«2
(7] »(~J LESS1 I)/5P430 [4] SP8304:+(PPLI;4)2PPLJ;4])/SP430
(8] 5«1 [5] +(J LESSX I)/SP430
[9]1 TP2+rP2(14]1,PPLJ-N-1N] [6] S+«14TP2+PPLJ;4+1H]
[10] S5uMi {71 SUMX
[11] SPu30:>(PPMzJ+«J+N4)/SPu304A [8] SPu30:+((|P¥)2J«J+1)/SP4304
[12] +(§=0)/85Puso ()] +(5=0)/SPuS0
{13) HORSIZ1 _ [10] NORSIZX
[14] PPLI-N+31«"1 [11)} PPLI;11+71
[15] =(TP1[4]1=PPLI-N1)/SPu70 {12] +(PP(I;4)=[/TP1)/SP470
[16] 5P450:PPLI-N+13+1 £13] SP4s0:PP[I;3]+1
(171 SPU4T70:>(PPH2I<I+N4)/5P4T04 [14] SPu70:>((|PN)2I+«I+1)/SFu704
v v
vsP211[0)v . VSP2XXLO1v
vV 5P211 v SP2XX
(1] S5P871:I+1 [1] SPu71:I+1
[2] &SPo414:>(PPLI]=0)/SP641 (2] SPeu1A:~(PP{I;1120)/SP6ul
03] 52«(SxPPLI+1]«NP«ir+1)+52x~5+«52=PF[I+1] [3] S2+(8xPP[I;2)+NP+NP+1)+52x~5+52=PP[I;2])
[s] IT+I+ii3 [4] SUCC+0p0
[5] SUCCe0pDd [5] J+t
[6] J+1 (6] SPS10A:+(PPLJ/;1]#1}/5P510
[73 5SP5104:+(PP[J]=1)/8P510 [7) +(J LESSX I)/SP510
(8] JT«J+K3 [8] PPLJ;1l«2
(9] +(~JT LESS1 IT)/SP510 9] SP510:+((|PN)2J+J+1)/5P5104
{101 pPPLJ1+2 [10] J+1
[11] 5PS510:+(PPizJd«J+iu4)/SP5104 [11] SP5304:+(PP[J;11=2)/SP530
{121 Je1 [12] K+1
{13] S$P5304:+(PP[J]=2)/5P530 [13) SPS204:+((PP[K;1]22)vK=J)/SP520
[14] JT«J+53 [1u) +(~J LESSX K)/S5P525
(151 &+1 [15] SP520:+((|PN)2K+K+1)/5P5204
[16] 5P5204:+((PP{K}=2)vK=J)/SP520 [16] SUCC+«5UCC,PFLJ;2]
[171 KT«K+N3 [17] -+5P530
{181 ~(JT LESS1 KT)/5P525 [18] SP525:PP[7;1]¢1
[19] 35520:~(PPHM2K+K+lN4 /SF520. {151 SP530:>({|PN)2J+«J+1}/5P5304
{20] BUCC«SUCC,PPLJ+1] {20] PPL;1)«(PP[;1]x~5)+5+PP[;11=2
{211 =5P530 {211 2+14((R=1),(PP{I;3]= 1 2),1)/1b
[22] sP525:PP[J]J+1 (221 * ‘':¥P;' YR ';'4B2 B2 2 TL(3xT-1)+1
[23] SP530:+(PPM2J+J+N4)/SP5304 315" sUCCs 'i8UCC .
(28] J+1 [23] J+1
[25] 5P5354:+(PP[J]=2)/SP535 [24] SP6404:+(1=+/K«PP[I;4+18]ed)/SP6UHO
[26]1 FPLJ]+1 [25) ' vyt BLOCK ';J:' @ "KW
[27] SP535:+(PPl2J+J+lu)/5P5354 [26] SP640:+(PPLI;ulaJ+d+1)/5P6404
[28] 7T«14((R=1),(PP[I+2]= 1 2),1)/14 [27] +(PP[I;u]=1)/5P840
[293 * *;wpy° TR Y;1'AB2 B2 2 '[(3+T-1)+r [28] SPeu1:+((|PN)2T«I+1)/5P6u414
313 sycc= ',5UCC [28] SP3X
[30] J+1 : [30] SPuX
[31] SP650A:+(1=+/K«PP[I+3+1N)ed)/SPEUO [311 -+5Pu71
[32] ' ot BLOCK ';d;' @ '";K/WN [32] SPBu0:SP50
[33]) 5P640:+(PP[I+3]2J+J+1)/SP6L0A v

[34) ~»(PP[I+31=1)/5P8uo0
(35] SPou41:+(PPM2I«I+N4)/SP6U41A
[36] 38P31
[37) SPu41
[38] -»5pP471
[39) 5P840:SP50
v

FIG. 6.3
CONTINUED
(36)

i

vsP31L0lv vspP3x(BIv

v 5P31 v SP3X

(1] ReRtI«1 [1] ReR+I«l
(2] 5P7604:»(PP[I120)/SP760 [21 SP760A:+(PP(I;1]20)/5P760
(3] J«I - [3] J+I+l
(4] SP7594:+((I=J)vPP[J]=0)/SP759 [4) SP7594:+(PP[J311=0)/5F759
(51 7pP1+TP1{ 4], PPLI+3+1N] [5]1 TPi«PP[I;u+1¥N]

[6] TP2+TP2L 4], PP[J*av-N] t6)] TP2+PPLJ;u+1¥]

7] sumi [71 SUMX
[81 WORSIZ1 (8] NORSIZX

Ee]] EQUAL1 , {91 EQUALX

10] +(LEQ%0)/SP759 {10) ~+(0=2LEQ)/SP759

[11] PP+PP,l4p0 [113 PPe((| PN«PHN-1) ,N4)p(,PP), 1,PN,3,([/TP1),TP1
[12] PP[PPMNNM]«- 1,PN,3,TP1[3+1N+1] . {12] SP759:+((|PN)2J«J+1)/5P7594
[13] PN«PN-1 . [13) SP760:+((|PN+1)2I+I+1)/SP7604
[14] PPM+«PPM+NY v

[15] SP759:+(PPMaJ+J+H4)/SPT159A
[16) SP760:~(PPM2I+I+N4)/SP760A
v

vspu1(0lv
v SPut
[1] I+1 vSPux({Olv
(2] SP7614:+(PP[IJ#0)/5P761
(3} PPCIl+1 v SPux
[4) SP761:>(PFPM2I+«I+N4%)/SPT614 (1) PPL;1)«(PP;1]x~8)+5+PP[;1]=0
[5] Iein) [2] I« .
[6]1 SP830A4:+(PP[I-N3]=1)/5P830 (3] SP8304:~(PP[I;11=1)/5P830
[7] J«Nu (41 J+1
(8] 5P8104:+{(PP{J-N3]=1)VvI=J)/SP810 [5] SP810A:+((PP[J;11=1)vI=J)/5P810
(91 +(J LESS1 I)/SP830 [6] +(~J LES5X I)/SP830
[10] 5P810:~+(PPM2J+J+H4)/SPB10A [7] 5P810:>((|PN)2J+J+1)/SP8104
[11) PPLI-N31+0 (sl PPLI;1]+0
[12] SP830:+(PPM2I+I+N4)/SP8304 [9) SPB30:+((|PN)2I+I+1)/SPBIOA
v v
vspsolDIv
v SPS0
[1] spPsuo:'! 840 WRITE(3,213)
{21 t6p'- WRITE(3,841)
3] *° 841 FORMATI/26H TWO- SYATE GENERATER TABLE)
[u] *TWO-STATE GENERATOR TABLE' WRITE(3,842)
[5] 'STATE STATE PARTITION NO.' 12 842 FORMAT(/S5X,25HSTATE STATE PARTITION NO.,/VH)
{6 I« 00 850 I=1,N
[7]1 SP850A:J«I DU 850 J=1,N
[§:B] SPEsoB-*(I J)/SPBSO . IF(1.EQ.J) GO TO B50
[91 I;! i ;5201;4] WRITE(3,851)1,J,S2(14J)
{10] SPBSO »(IIZJ*JH)/SPSSOB 850 CONTINUE
[11] »(K2I«I+1)/5P8504 851 FORMAT{3X,316)
[123 ' 13 WRITE(3,213)
[13] 16p'-* WRITE(3,852)
[is) * ° —ee 852 FORMAT{/26H NEW MACHINE(O=NO, 1=YES)?)
v 1“__ READ{1,120IN
15 IF(N) 20,860,20
A60 STOP
END
PIATX

SP LATTICE PROGRAM
MACHINE NAME ?

PIAT

NUMBER OF STATES , ¥
O:

'l

8
NUMBER OF INPUTS
0:

2
STATE TRANSITION TABLE:
FOR EACH I ENTER 2 RUMBERS (sN)
CORRESPORDINC TO FSUI;J] FOR J=1 T0 2

I= 1
a:
37
I= 2
0:
4 8
I= 3
et
18
I= 4 TWO-STATE GENZRATOR TABLE
0: STATE STATE PARTITION NO.
25 1 2 1
I= 5 1 3 4
O: 1 u u
24 1 5 7
I=6 edaceecceccessas 1 6 7
0: 1 7 7
13 LATTICE TABLE 1 8 7
I=7 CODE: A = LATTICE ATOM 2 3 4
0: B = BASIC GENERATOR 2 4 [
4 4 2 = TWO-STATE GENERATOR 2 s 7
I= 8 2 6 7
0: No. ROW TYPE 2 7 7
3 3 [} [} ZERO 2 B 7
1 1 AB2 Sycc= o 3 4 1
---------------- BLOCK 1 : 1 2 3 5 [3
BLOCK 2 : 3 & 3 6 2
MACHINE NAME = PIAT BLOCK 3 :+ 5 6 3 7 7
N= 8 Pz 2 BLOCK 4 : 7 8 3 8 7
2 1 AB2 SUCC= 0 y 5 3
---------------- BLOCK 3 : 3 6 4 6 6
3 1 AB2 succ= o y 7 7
STATE TRANSITION TABLE BLOCK 4 : 4 5 4 8 7
4 2 B2 SUcC= 1 . S 6 1
INPUTS BLOcK 1 : 1 2 3 & 5 7 4
STATE 1 2 BLOCK 2 : 5 6 7 8 S 8 4
5) 2 sycc= 2 3 6 7 L]
1 a7 BLOCK 3 : 3 6 6 8 4
2 4 8 BLOCK 4 : 4 5 7 8 1
3 1 6 6 3 2 syce=1 5
y 2 5 BLock ¢ : 1 2 ecceescaecceaa-.
5 2y BLOCK 2 + 3 4 5 6
6 103 BLOCK 3 : 7 8 NEW MACHINE (0=NO , 1=YES)} ?
7 4 u 7 5 2 succs 4 6 [sH
8 3 3 BLOCK 1 : 1 2 3 4 S 6 7 8 0
F16. 6.3
CONTINUED

37

consists of the functions obtained by a literal tramslation of
the FORTRAN programs. All of the DO loops in FORTRAN remain as a
loop structure in the APL functions. 1In the places where this
leads to obvious misuse of APL corrections are made and the :
resulting programs are contained in YGRP FIRST . Function
names are of the form FN1 here. In this second attempt
assignments are 2loo combinéd. For instance lines 7 through 16
of SP are combined into lines 3 and 4 of SP1 which we would
denote by sP(71,...,[16]1 » SP[3] ['4]'. In making the
transition from those functions grouped in)GRP FIRST to those
in)GRP XXXX a matrix representation was used for PP rather
than a vector form. This resulted in being able to make use of
inner and outer products in manipulating PP such as in
SPX[11] and SP1[18]. TP1 and TP2 are reduced to contain
just the partition and not the coding information. Redundant
statements such as SP1[8] and SP1[11] are removed. In GROUP
XXXX it is no longer necessary to keep track of PPM and

partitions ‘are much easier to address; see SP1[221 «» SPX[18]. " o

As shown in the last page of the Continued Figure 6.3 _(p37.-), L
the driving functione for each of the three stages in the FORTRAN
to APL translation are given by PIAT PIAT1i" and PIATX..
Figures 6.4 through 6.8 give the various translations of the
original FORTRAN subroutines: SUM, REDUCE, NORSIZ, EQUAL and
LESS. In most cases by the time the third cut at programming
was made the APL functions were down to 1 line. In SUM X a
straightforward search is made to find an I such that
(TP1 ¢ TPi [(TP2 e TP2LI1)/\N1)/ N
is not empty. This redu_c‘es grea;ly. t_:he amount of looping compared
to SUM 1 , where all indicés :are"four‘id serially. iIn REDUCE a
vector I is again found in a rather straightforward fashion, so
that it contains all of the indices necessary to make changes

in TP1.
(38)

VREDUCELDIV

Y REDUCE;I;J ;KM
[1) RED9:I+1
[2]) REDuOA:J«1
(3] REDuOB:~(TP1[I+4]=TP1[J+4]1)/RED4O
(4] K1
[5) REDSOA:*(TPl[PS[I;K]#k]=TP1(FS[J;K]4HJ)/RED30
[el A«TPL[PSLI;K)+4]
{73 B+TP1[FSLJ;K1+4]
fsl Me5
[3] RED20A:+(TP1(M1=B)/RED20
[10] TP1(M]«A
[11] RED20:~+(N42M+M+1)/RED20A
{12) ~RED9
[13) RED30:+(P2K+K+1)/RED30A
{14] REDWO:+(N2J+J+1)/RED40B
[15] +(N2I+I+1)/RED40A
v

YREDUCELLOIV

v REDUCE1;I;J;K
[1] RED9:I+1
[2) REDu0A:J+1
{31 RED4OB:~(TP1{I+4]=TP1[J+4])/REDYHO
(4] K1
Cs] REDSOA:+((A«TPl[FS[I;K]#u])=B*TP1[FS[J;K]+M])/REDSO
[61 TP1[u+(TP1l4+18]=B)/1N]+A
[7) ~REDS
[8] RED30:+(P2K+K+1)/RED304
(9] REDuO:+(N2J+J+1)/RED4OB

[10] —+(N2I+I+1)/RED40A
v
[DI RIS]
TONNCE D
11 »1414r«1+(0 RI«IPLIEPITYARSPLe 2T Tyer ;
Lo 01,.??1[(??;-“ .FIF?j,J') 8 2. =TPIx(1)ePlii)l

«14(, XM I02]331=X[Ir3);1)/1P1

FIG, 6.4
- SUBROUTINE REDUCE

vsuMLa1v

v SUM;I:J:K
[1] I«5
{21 SUMu0A:~(TP2[I]=0)/SUM40O
3] A«TP2LI]
[4] Jel
[(5] SUM30A:+(TP2[J1=4)/SUM30
Lol >(TP1{I)=TP1[J])/SUM20
£7] B«TP1[I]
f8] c«TP1{J]
Ls] K+5S
[10) SUM10A:+(TP1[K]}=C)/SUM1O
Ell] T7P1{K]1+B
12] SUM10:+(Nu2K+K+1)/SUM10A
[131 SUM20:TP2[JJ+0
[14] SUM30:+(N42J+J+1)/5UM30A
{151 SUMB0:+(Nu2I+I+1)/SUMU0A
v

vsUM1LOIV
v SUM1;I:J
11 I+5
[2] SUM40A:+(0=A«TP2LI])/SUM4O
[3] J+1

[#] SUM304:+(TP2{J]=A)/SUM30
[5] +((B<TP1[I))=C+TP1{J])/5UM20
[6] TP1{u+(TP1[4+1N1=C)/1N1+B
[71 SUM20:TP2[J]«0
[8] SUM30:+(Wu2d+J+1)/SUM30A
[9] SUMBO:+(Nu2I+I+1)/SUMH0A

v

vSyMxL01v
9 SUMX;I;d

(1] | s2xxieit(v/(TP20,=TP2)x(RJ)V. #J+(2,0)pTP1,TP2) /1N
[2] +1,.TPLL(TP1eTPil(TP2eTP20I1)/101) /AW I«TPLLI]

FIG. 6.5
SUBROUTINE SUM

(39)

[~ B od

20
30

40
50

10
20

40

SUBROUTINE REDUCE {N+P,FS.TPL}

IMPLICIT INTEGER*2(A=Z)

DIMENSION FS(100,5),TP1{104)

N4=N+4&

CONTINUE

DO 40 I=14N

DO 40 J=I,N

IF{TPL(I+4)NE.TPL{J+4)) GO TO 40

00 30 K=1,P
IF(TPLIFSII K)+4) cEQ.TPLIFS(J,K)+4)) GO TO 30
A=TPLIFS(I,4K)+4)
B=TPL(FS{JsKI+4)
DO 20 M=5,N4
IF{TPL(M).EQ.B)
CONTINUE

GO TO ¢

CONTINUE
CONTINUE

RETURN

END

TPLIM)=A

SURBROUTINE SUM (N,TPL,TP2)
IMPLICIT INTEGER=*2(A~2)
DIMENSION TP1{104),TP2(104)
N&=N+4

DO 40 1=5,N4
IF(TP2(1).EQ.0) GO TD 40
A=TP2(1)

DO 30 J=1,N&

IF{TP2(J).NE.A) GO TOD 30
IF(TPLII)LEQ.TP1(J}) GO TO 20
B=TP1(1}

C=TP1L{J)

DD 10 K=5,N4
TF(TPL(K}.EQ.C) TP1{K)=H
CONTINUE

TP2{J})=0

CONTINUE

CONTINUE

RE TURN

END

YNORSIZLOIV

Y NORSIZ;I;J:K
[1) Ies
[2] XOR10:7TPI[I)«-TP1(I]
[3) ~(N42I+I+1)/NOR10
()] I«1
[51 Jes
[6] NOR304:+(TP1[J])>0)/NOR30
[71 A«rP1lJ]
[8) Xe«J
[91 NOR20A:~(TP1[K])=A)/NOR20
£10) 7P1(K]eI
[11] HOR20:+(Nu2K+«K+1)/NOR204
(12] I«I+1
[13] HOR30:+(N42J+J+1)/NOR3IO0A
[14] TPil4l«I-1
v

VNORSIZ1L0OIY

Y NCRSIZ1:;I:J
{11 TPieTP1i4],-TP1l4+1N]
[21 I+l
[al J+5
[4] NOR30A:+(0<A«TPi[J])/HOR30
[5) 7TP1L"1+J+(TP1[T 14J+15+H-J1=A) /1 S+N-J]«I
[6] I«I+1
[7] ROR30:+(N42J«J+1)/NOR3I0A
[8] TP1lul«I-1

v

VNGRSIZX[O]V

vV NORGIZX
{13 PPi+(W)+ . x((\W)o.2TPL)[4TP1 N]
v

YEQUALLOIY

v EQUAL;I;J
1] I+ii4
(2] EQU204A:J«l
[3]1 &QU10.:+(TP1[J)=PP[I+J-i+4])/LQU20

£7] +0
8] EQU20:»(PrizI+I+iu}/EQU204
(%:D) LEQ+0

VEQUAL1LL]V

v EQUAL1
1] ~(0=LEQ+vY/EQ+A/(((PDM¥NG) N8)pPi=PFNpTP1)[;3+18+1])/0
{21 PPEQ+NUxEQ11

v

VEQUALXLDIV

vV EQUALX
1] LEQe(| Pii)2PPEQ+(PPL;4+1H1A. =TP1)11

VLESSLDIV

vV Y<X LES5 Z:KiM
1] ZT«Z-ii
[2] XT+X-K
£3] K<t
(4] LESS104A:M«K
[5] LESS108:+((PPLXT+K}=PPLXT+#))APPLZT+K]1=PPL2T+!])/LESS20
[6] ~+(N2M+H+1)/LESS10B
[7) +(izE+K+1)/LESS104
[8] Y+l
L9l -0
(103 LE3520:¥+0
v

>VLE551[D]V

v Y«X LESS51 Z;K
(1) 27+2-0
(2] XT«X-W
(3l K+l
(€'Y LEGSiDA:*(V/(PP[XTfK]=PPL'1+XT+Kf|H+1-K])APP[ZT#K]:PF[
T14ZT+K+41N+1-K1)/LES520
[5] +(E2E+nti)}/LES5104

[63 I«i
{21 +C
[8) LESS20:Y+0
v
VLESSX[0]v

Vv Y+«X LES5X 2

FIG. 6.6
SUBROUTINE NORSIZ

FI6. 6.7

10

15

20
3

o

2

[}

3

=}

SUBROUTINE EQUAL

[11 Yev/v/(PP[Xib+1N)e . =PPLX; 4+ 1 NI)APPLZ;4+1H]e . 2PPLZ; 84 1¥)

v

FIG. 6.8

SUBROUTINE LESS
(40)

20

SUBROUTINE NORSIZ (N,TPL)
IMPLICIT INTEGER*2(A~7)
DIMENSION TP1{104)
No=N+4

D0 10 1=5,N4
TP1(I)==TP1{1)

I=1

DO 30 J=5,N4

IF(TP1(J)) 15,15,30
A=TPLLI)

DO 20 K=J4N4&
IF(TPLIK)4EQ.A) TPL(K)=I
CONTINUE

I=1+1

CONTINUE

TP1{a)=1-1

RETURN

END

SUBROUTINE EOUAL (NyPPM,TP1,PP,LED,PPEN)
IMPLICIT INTEGER¥2(A~Z)

DIMENSTION TP11106),4PP15000)

N&=N+4&

D) 20 1=N&,PPM,N&

B0 10 J=4,.N4

TFETPLUJ) LNELPPLE=N=4+J}) GO TO 20
CONTINUE

LER=1

PPEQ=I

GN TU 30

CONTINUE

LEO=0

RETURN

END

EUGICAL FUNGTIUN LSS TN PP)
TMPLICEY INTEGER®=2{A-7)
DIMENSTUN PP S000D)

11=1-N

Ji=Jd-N

DO 1O K=1.,N

N 10 M=K.N

TEEPPLOTHK) JER.PPLATHM) JANDL PP LET4K) JNF PRI oMY
CUNTINUE

LESS=.TRUE.

RE TURN

LFSS=.FALSF.

RETURN

END

6.2 Results for Time and Space

FORTRAN
CPUTIME (seconds)

COMPILE

Link Edit

GO

Total Scheduler
Total

Storage (bytes)
MAIN

SUM

REDUCE

NORSTZ

EQUAL

LESS

TOTAL

APL

CPUTIME (seconds)

Execution

Storage (bytes)

Before Execution

largest during execution

After Execution

Compiler
G
36.89
4.25
2.75
4,67
48.56

38,846
676
842
578
572
660

62,576

Programs
ZERO
592.4

12360
14884
13748

H(Opt=0)

30.55
4.49
2,77
4,92

42,73

38,416
646
790
558
516
508

61,832

FIRST
508.4

9324
11556
10712

H(Opt=1)

43,10
3.77
2.49
4,69

54,05

37,034
534
596
454
450
426

59,896

Xxxx
. 8503 ¢

7564
9448
8716

Clearly there is a trade off in time and space between the

two modes of operation.

If one were to compute the product of

space and time using the maximum space in APL and the Link Edit,
GO and Schedule time, but not the Compile time in FORTRAN, we

have (in byte seconds):

(41)

SP (GHF)
62.6

5116
7680
5628

FORTRAN: G H(Opt=0) H(Opt=1)

730,262 753,114 655,861
APL: ZERO FIRST XXXX SP
8,817,282 5,879,693 805,914 480,716

Independent of any value judgements as to what these figures
may or may not mean, one lesson which is clear is that if any
value is to be gained in the use of APL it will require
programming in a style which is suited for APL and not directly

| following the programming style found in a FORTRAN program. This
can either be done by a re-analysis of the algorithm implementation
or by an iterative improvement scheme. In either case computational
efficiency can only be gained by using program constructs which
are not readily obvious in the FORTRAN-like program.

Re-examination of the critical subroutinés in Figs. 6.9 - 6,12
indicates that when translating from ZERO to FIRST there are
instances when the second subroutine runs slower thaﬁ the original
although the averages of the ensemble are less.

The stratification of times, particularly relating to group
XXXX, denotes that time in execution for the subroutine in.

question occurs in quanta. These are predictable'from examination

of the coding.
7.0 THE FAST FOURIER TRANSFORM

The Fourier transform has always been of interest to the
scientific community, but the computational efficiencies found in
those procedures termed the Fast Fourier Transform (FFT) have
recently allowed the Fourier Transform to emerge as an effective
problem solving tool [13,14]. Further, the array structure of
the procedure appears to lend itself to an APL implementation for

interactive use.

A FORTRAN H program was written, essentially by translating

(42)

b .;::i:": l ::.'_ IEEEE1 ISR O S0

(60ths of a second

s oy
|

l"‘.. | B
- :
IR

CPUTIMES REDUCE [4 CPUTIMES REDUCE]
CPUTIMES REDUCE 1 [4 CPUTIMES REDUCE] .
CPUTIMES REDUCE X [A CPUTIMES REDUCE X].'

I.
*, 457.1
II. 27.8

SO RIS FEERN EEETI IRPRTEETN EPEN PIER) PSS ET ,jﬂx;?;iait:;geh:
MOMENTS DURING PROGRAM REARRANGED

FIG. 6.9
B 'SUBROUTINE REDUCE
pfi i i R IS O (43)

(60ths of

AVERAGES :

I.
%

II.

152.5
139.5
22.3

CPUTIMES SUM [A CPUTIMES SUM]
CPUTIMES SUM 1 [4 CPUTIMES SUM]
CPUTIMES SUMX [4 CPUTIMES SUM]

Tt

%} MOMENTS DURING PROGRAM REARRANGED
FIG. 6.10 i

- o
SUBROUTINE SUM !

(44) ' ‘

f‘f‘

IMES (60ths of a
v g 3 [S S WA,

second) .-

1. R
“1 CPUTIMES NORSIZ [4 CPUTIMES NORSIZ]

*

-4 11,
"1 CPUTIMES NORSIZ X

Pt IR

[Sl

B AR TR EREEE EERNT RS SN I
. AVERAGES :

% 25.6]:

II. 5.9

PSS AP PO B

MOMENTS DURING
S E FR B [

o
i
i

i
!
A
i

:i.i;{::: i:':'.:i:,.'g

PROGRAM REARRANGED - |

i

I.

CPUTIMES EQUAL [CPUTIMES EQUAL]’
. A

CPUTIMES EQUAL [A CPUTIMES EQUAL]

II.

i CPUTIMES EQUAL X

1" 25.3 1

| AVERAGES: .* 6.8

S II. 3.3

N

l

=t

URING PROGRAM

SRR

GED _._|.

FIG. 6.11

SUBROUTINES NORIZ & EQUAL

(45)

of a second)

S

ME

CPUTIL

CPUTIMES LESS [4 LESS]
CPUTIMES LESS 1 [LESS]
CPUTIMES LESS X

6. 12
SUBROUTINE LESS

I
*
II

"FIG.

MOMENTS DURING PROGRAM REARRANGED

s (60th

3

84

AVERAGES
I.

~-R.C. Singleton's formulation of the FFT, Algorithm 338 of the
Collected Algorithms of the CACM [15], from ALGOL. to FORTRAN.
This algorithm is based on Singleton's approach to implementing
the original Cooley-Tukey algorithm and the background material
is contained in [14].

The six procedures, COMPLEXTRANSFORM, REALTRANSFORM, FFT2,
REVFFT2, REORDER and REALTRAN were coded in addition to a main
program which was used to read the input from data cards and then
call COMPLEXTRANSFORM or REALTRANSFORM as appropriate. Following
the observation made earlier in this report regarding coding in
FORTRAN,.double precision arithmetic was used throughout. For
the actual tests to be described shortly only the MAIN program
and the subroutines corresponding to the procedures for
COMPLEXTRANSFORM, FFT2 and REORDER were compiled and used.

The equivalent APL function FFT was a modified version of
an algorithm given by A.L. Jones, IBM, Endicott, N.Y. in the
APL Quote-Quad [16]. The algorifhm was modified to exploit

improvements in APL\360 , the IBM Program Product since Jones'
algorithm was distributed. (He has since distributed an improved
version.) The variant also provided both forward and inverse
transforms and a scaling in both directions.

In each of the cases run, for both FORTRAN and APL, the
forward transform and the inverse were calculated, invoking two
calls to COMPLEX TRANSFORM. This was done to provide a check in
returning to the original data. In the cited results both the
FORTRAN and APL results agree to 10 significant places.

The use of FFT, in both environments, requires 2*N data for
some N. Due to storage of temporaries and calculating with
reals (long or 8 byte representation for floating point operationms),
APL 1is restricted to those cases where N < 8 for workspace
sizes of 36 K. This limitation comes from the dynamic data size
and while the restriction of size is much less than the number of

(47)

points normally used for the FFT, where N 1is usually in the

range of 12 or so, the time and space trade offs may be seen.
7.1 Tests and Results for the FFT

The tests used data of the form
V 2 « CRT N;T
(1] Z «((2%N)p (Tpi), (T+2xN-1)p0), [0.5]0
v
In general, the actual data has no real significance for the tests
at hand; rather, the size of the problem is governed by N
because (2*N) = 1 + pCRT ', The significance of the FFT is
that the time, or number of calculations 1is proportional to
N x 2xN for 2*xN data points. The time to execute
~4 FFT 1 FFT CRT N , or its FORTRAN equivalent, for ¥ < 16
is summarized by:

(times in 60th's of a second)

N . APL FORTRAN
Compile, Load, Go EXECUTION
1 39.4 3154 ' 36
2 62.6 3143 42
3 96.4 3172 54
4 149.2 3190 68
.5 255.4. 3211 88
6 489.6 © 3268 141
The sizes are (in bytes): ‘
APL FORTRAN
LOAD MODULE
528 4752% 30, 584%*

* Includes 484 bytes of MAIN program to read input.

*% Includes 4124 bytes of static COMMON to pass data to subroutines
and 12 FORTRAN subroutines, such as IHCEFIOS* for I/0 (21,708
bytes) .

(48)

In FORTRAN the average time for all runs, for compilation,
Link editing, and scheduling was 2466.3 60ths of a second.
Comparing only the size of the programs the ratio is 528 bytes
for APL to 4502 bytes for FORTRAN or 1 to 8.5. When the APL
function is compared to the FORTRAN load module, the ratio is then
528 to 30,336 or 1 to 57. Carrying this comparison to one of
total space we must compare the work space size, 36 K, to that
needed for compile, load and execution, 160 K, giving a ratio of
1 to 4.44. 1If we take into the calculation the size of the
interpreter, then (if a 1 workspace system would be a possibility)
the ratios would be 124 K (88+36) to 160 K or 1 to 1.21. Placing
relevance on any one of these ratios, (or other suggested
comparisons, for that matter), is not a straightforward task.
Comparing the direct program sizes does not measure the space
dynamically allocated for data and for temporaries created during
execution of the APL function. At the same time, part of the
FORTRAN code is contained in the run time package, and yet an
attempt to compare the APL function size to the FORTRAN program
with>the run time package overlooks the fact that APL's
structure requires the workspace and a great deal of an APL
function's support is in the interpreter. Including the size of
the interpreter in the calculation does not take into account the
fact that the interpreter may be shared whereas run time
packages generally are not. On the other side of the coin, the
space used in the compile/execute cycle may be overlayed whereas
the interpretive execution requires more nearly complete residency
when attempting to use APL 1n a batch fashion.

The times of execution for the FFT would be expected to grow
with ‘N x 2%V for 2%N points, and the FORTRAN times when
plotted on a semi-log scale have an almost linear relationship
with ¥ . The APL times are somewhat slower and show a growth

greater than linear and approaching quadratic when plotted on the

(49)

same scale as the FORTRAN data. It is interesting to note that
nowhere are the APL execution times comparable with the FORTRAN
execution times, but over most of the range of N considered here

the APL times are less than the FORTRAN scheduler times.
8.0 A NASA APPLICATION PROGRAM

In order to get some measure of utility in the application of
iﬁterpretive techniques it was imperative to study one or more
application programs typical of those encountered by scientists
and engineers at Goddard Space Flight Center. »The program
supplied us by NASA Goddard was . one written by M. Javid [17]
when he was a visiting scientist at Goddard. The program,
hereafter called the NASA Radiation Pattern Program, takes the
geoﬁetry of a dish antenna, excited by an arbitrary primary feed,
and calculates the resulting field at specified angular increments
for Theta and Phi in a spherical coordinate system.

This particular program is of interest because in addition to
being typical of the work of scientists and engineers, Javid
developed the radiation pattern in APL and then from that a
FORTRAN version was programmed for actually running the program.
The effective use of APL in this fashion is reported by Javid
in The Use of AFL at Goddard Space Flight Center (C.J. Creveling
Ed.) [18]. This type of use of APL only partially relates to

the third category of use of APL which has been mentioned on
page 2 of this report.' Even though no compiler currently exists
for APL, success has been found by using APL for algorithmic
development with subsequent reprogramming in another language;
see Kolsky [19] for another instance of this technique.

We were provided with a Xerox copy of a listing of the
FORTRAN program along with the report [17]}, a Xerox copy of
the APL functions, and the collection of papers edited by

Creveling [18]). From this collection of material inferences

(50)

about this kind of program were to be drawn.
8.1 Program Characteristics and Programming .Problems

The first task was to get Javid's FORTRAN H program running
at Syracuse University. Unfortunately, a running program deck was
not available and the quality of reproduction of the copy was lacking
due to either lack of contrast or break-up in reproduction of the
characters. Much time, both by man and computer, was spent
* removing errors of punching and program misinterpretation.
Eventually success was achieved for the FORTRAN program and the
availability of the original APL version and the descriptive
material were invaluable in accomplishing this.

The program may be characterized by having a small amount of
input data: the number of increments for Theta and Phi; the
diameter of the reflector, which has rotational .symmetry; the
focal length; and the wave length. The nature of the geometry,
and that of the primary feed, is implicit in the program. The
APL function coded by Javid deals only with parabolic
antennas, and we restricted ourselves to duplicating these.cases.

It must be noted that if the flexibility is achieved by
alternate coding, then additional effort in tailoring the
program to the requirements of the problem must be made on a case
by case basis,

The intermediate calculations are performed .in a Cartesian
coordinate system rather than one of spherical coordinates. 1In
order to calculate the field at an arbitrary point, the
circular antenna is divided into annular rings, . the number of
which is a function of the dish size and the wavelength. Each
ring is divided into a number of segments such that each segment
has approximately the Same area as any other segment in other
rings. An approximation of the field contribution of each
segment is computed and then all of the contributions of the

(51)

segments are summed to provide, by superposition, an approximation,
to the limiting case of arbitrarily small segments,of the surface
integral.

The field is calculated at each of the (Number of Theta
increments) x (Number of Phi increments) points by a doubly
nested looping procedure. After normalization there is a
translation from cartesian coordinates to a spherical system to

give the radiation pattern.

8.2 Recastinuy Lhe Original APL Program

Javid's original collection of functions were written at a
— time before the circular functions were added as APL primitives.

Thus, an obvious step was to delete the APL code for the functions
SIN X and COSX use 10X and 20X respectively in the body.
This minor change is reflected in Figure 8.1l.

Lines 125 and 128 of BEAM have an error in them. Lines
124 to 129 are used to translate from cartesian to spherical
coordinates and for both the real and imaginary components in the

Theta direction

1t 1. cos 9 cos @ 1t i + cos 6 sin @ ¥ 2 _ gin 0 I%? i
e x avr——— y 2
and not
Igi = cos B cos Iri + cos 6 cos § I? 1. sin 6 Ir"i
% g8 ¥ Yy 2

as shown in lines 125 and 128. Even with the corrections an
examination of the ancillary functions

HXR, HXI, HYR, HYI, HZR, HZI, which are used to calculate
the Real and I maginary components of the source field, # ,
the X, Y, and Z directions based on the x, ¥y, and z values
(of course these depend on r, 6, and @) points to other changes.
These functions have a large dependence upon the use of global
variables with little use (in HXR, HXI, HZR, HZI) of the

arguments, and this and other considerations suggest treating a

(52)

VEEAKLUIY
V RES<«AR1 BEAM AR2

L1] DIA<30
[21] LUDA+0 . 425
L31] DFID+3
Lud DITAD+3
L5] PPI«2x3,141592654
Lel DE<TI'I+360
L7) DFI<DFIVXDR
L8l DTA+~DTAUXDR
L9] K<TFI:LiiDA
L10] DRUHL«S<«LIDA4,7316666G7
L11] Rel(Llaz2):0
[12] «599
[13]) RI<«(i+2)p0
[14] HWNSUL<(£+2)p0
{15] J<«0
L16] I<«0
(17]) p13:I«1+1
L1381 SUii«oC
L19] B12:d«J+1
(20] ~(J>R)pB10C
L21] DLSUM«6xd
L2211 ~»(DSuUli>M)pLbiy
[23] SUH«SUMU+DEUH
[24] =(SUi>L)pE11
{251 =-B12
(26] Bl1:4ILI+1])«Jd-1
[27] WSUNLI+1])e5UL-L5UI
28] J«J-1
L2%] ~B13
[30] BiW:'"8TORAGE IS5 INSUFPFICILEY FCR THE FOLLOWING RING:'
{311
{32] RI[I+1]«J-1
123] WSUMLI+1]«SUM
L3u4] I<«I+1
L3541 =»L15
1361 810:'"LNWD CF REFLECTOR SCECIFICATICH!
1371 RILI+1]J«d~-1
L38] WNSUMLI+1]<SUi
[39] I+«I+1
Lu0] D15:LIR+TI
Lu1l] 'POTAL NUUBLER OF ELEHENTANY ARZA CONTRIBUTING TO TiHIS COiDUTATI

0[‘1" IS: '
Lu2] +5UMDS«+/iSUM R \
Lu43) HTX«(9,((AR1+1)xAR2+1),LIR-1)p0 S

[uu] VX<«lipl
[us] VYeip1l
Luel VZ<tipl
[u7] VNX<«iipl
tus] ViiY«dpl
Lu9] ViZ<lipl
L50] VD5<«lipl
[51] VHXE<«lp1l
L5211 VIHKI<«lipl
[53] ViYR+iMp1
Lsul ViYI«tipl
(65] VHZE+Mp1
{56]) ViZI+kipl
[57] In<0
[58] B16:IRk«IR+1

FIG 8.1
BEAM (ORIGINAL)

(53)

[121] IZR+«IZH+((AZRXCED)-AZIxSKD)xVDSLI]
{122] I2I«IZT+((AZRXSKD)+AZIXCED)*xVDSLI]
{123] »B7
[124)86 :CRI«(STAXCFIXIXR)+(STAxSFIxIYR)+CTAXIZE
[125] CTR«(CTAXCFI®IXR)+(CTAXCFIXxIYR)-STAxIZR
[126] Cz"f:«(—SFIxIXR)(CFIxIYR)T-' See P 52
{127] CRI«(SSAXCFIXIXI)+(STAXSFIXIYI)+CTAxIZI
{128 CTI«(CTAXCFIX{XI)+(CTAXCFIXIYI)—STAXIZI
(129]) QFI+«(-SFIXIXI)+CFIxIII
(130] AR2V«(CRE*2)+CRI*2 see p.S2
1131] AT2V«{(CTR*2)+CTI*2
L132]) AF2V<(CFR*2)+JFI*2
[133] MTXL;FPHG;IRJ«CRR,CTR,CFR,CRI,CTI,CFI,ARQV,AT2V,AF2V
L13u4] a2y
L135] »BY
(130])u4:»0510
VoIuwlulv

V Au«SIi T
L1] x“i"‘lO.T

v

vCUSLUly

V Au+<C0S5 T

[1] Adiie20%

vOSLUIV
Vv USI«Xx DS Y
(1] DoI«rPIx (((RHEO+0.5%S)*2) = (i2ilC=0.5%x5)*2) 3 2xL UK

v
vaYILUulv
veIlidly V JYII«X UYL Y
vV 2«X 2I Y [1] UITI<ZH2*xTSHENR
L1] r'<30 v
L2] LiO2«(X*x2)+¥*2
L3l Ze(ide2:(uxf)) -2
Y viazZrLdlv
V HIZRI<X HZR Y
vidiLylv L1] YH2<«Y+R2
V nXf1<X X Y L21] HuRI«YR2xCHER
L11] Halil«0 \%
v
viizILulv
ViXILulV V HaII«X ol Y
V HXII<«X HUXI Y (14 HOTI«YR2xUKR
L1] dXII<0 v
\
VilYaluly VWXZLUJV
V HYRI«X YR Y V ViiXi<X NXZ Y
[1] AR« (X%2)+(Y*2)+5%2 (1] El+((A%*2)+Y*x2)+2%2)%0.5
L2 K1+«2%0.5 L2] VIVXZ+«X:(Z2-R1)
L3) Kit€Xxil \Y .
Lul SEE<SIN KR VKYZLdlv
Ls] ChR«<CO0 KR V ViYZ«X NYZ Y
Lc] SR2+Z+%102 ' L1] Ri€((X*x2)+(Y*x2)+2%2)*0.5
L71] HYRI«-0OR2xCHEN L2] ViYs<«Y+(Z-R1)
v . v
A =\ VESLLlulv
S V VvZZ+X NZZ Y

L1] ViiZ+-1

FIG 8.1 (continued)
BEAM (ORIGINAL)

(54)

L59) +(Iif=LIR)pO

L60] FPiO+0

L61] T<«NSUMLIR+1]

[62]1 IEND+O

[63] I<«1

(o] dJ«-1

[65] Bl:d<«Jd+1

L66) (v=(RI{IR+1]-RILIR]))pB3
(671 JHU«RILIE]+J+0.5

L68]) KUAC<SxJll

L69] I+I-1

{70]) IEKDO<IEND

[71] LUli«6xJil+0.5

{72] DrHI«TPI:LUM

(73] I&liD<«IENDO+iWUM

(78] B2:I«T+1

L7511 ~»(I=Ii8D+1)pB1

[76]) Iid+(i-1ENDO)-0.5

1771 PHI<DPHIxII

(78] VXLIJ«X«RiOxCOS Pil

L79]) VY+Y«RHOXSIN PEI

L80] VIlIl«Z<«X ZI Y
Lo1) ViaAlId«x 0xi Y
L1821 VEYLIJ«X HYZ ¥
183) Vos[Il«X DS Y
Lew]) VdXRLI)«X UXR
{85) VHXILIl«X d4XI
Lscl) VUYRLI)«X UYR
Lg7] VidZILI}«X H#YI
L88) VuzitlIl«X HIER
Lg9] VULILIl«X HZI
[gv] B2

[91] 53:iI<-1

[92] uv5:iI«iI+1

[93] ~»(i#I=AR1+1)pB1GC

Louw] 4He<-1

[95] BY:iid<«NJ+1

{g96] +(iid=AR2+1)pB5

[97] FPHO+FPVO+1

(98] IXA+IXI«IYR«IYI«IZR«IZI+0

L9g] ZFA«iIxDTA

{100]) FI<«lJxUFI

(101] STA«SIN TA

L102] CT4a«C0S TA

L103] vFI«COS FI

L1o4] SFI<SIiid FI

L105] I+0

11061587 :I«I+1

(1671 »(I=T+1)pb6

L106] av+ix((VALIIXCFIXxSTA)+VYLIIxSFIx35A) VELIIxCIA
L10G] CKD«CUS KD

[110]) SKD<«SIKN KU

L111]) AXR«(VWNYULIIxVLEEZRLUIJ)-VHYR(I]

[112] AXI<(VNYLIIxVHZIUI]})-VHYILI]

1113] IXE<«IXR+((AXExCKD)-AXIxSKD)*xVDSLI]
L114] IXI«IXI+((AXExSKD)+AXIxCKD)xVDSLI]
L115] AYAk<ViXRLII-ViX(IIxVHZR(I]

[116] AYL«VHXILI)-VNXLIIxVHZI[I]

(117 IYR«IYR+((AYR*CKD)-AYIxSKD)*xVDS[I]
1118] IYI«IYI+((AYEkxSKD)+AYIXxCKD) VDSLI]
1119] AZR<(VWX[IIxVHYRLI])-VNYUIIxVHXR[I]
L1201 AZI«(VNXUIIxVHYILIY)-VNYLIIxVAXILI]

ok

FIG 8.1 (continued)
BEAM (ORIGINAL)

(55)

point as a 3 element vector and H as say a 2 by 3 matrix. This
in turn offers a general reorganization of BEAM along lines
encountered in Section 6 of this report. The strategy would be
to create an array which encompasses each of the p THETA by
p PHI points in both real and imaginary components in each of
the x, v, and z directions. These values are then calculated for
each of the segments found in all of the annular rings. If this
number is N , then the array would be of a size which is

(p THETA), (p PHI), 2 3, N
A plus reduction along the last dimension approximates the
integral and produces the answer in a cartesian coordinate
system.

One immediate problem is that for THETA and PHI increments
of 3 degrees to cover say 90° in each of THETA and PHI requires
30 x 30 x 2 x 3 = 5400 values, each using 8 bytes for storage and
thus requireing 43200 bytes for the result. Intermediate
calculations become even more demanding. The total number of
segments contributing to the calculating is given by N <« +/6 x v R
where R is the number of rings.

+/6 x 1 R« > 6 x +/1 R« > 6 x ,5 x R xR+ 1« >3 xR xFRk+ 1.
E 1is dependent on the geometry and wave length; for say a 30
foot diameter antenna with a wave length of .425, R will be 167
and this means that N will be 84,168 as calculated by Javid's
original AFPL antenna radiation program. This clearly indicates
that €73,.344 bvtes would be neeiél to utore thase ¥
values. Clearly, looping of some kind is imperative. The choice
was to attempt to maintain all points for THETA and PHI in
three dimensions and two components of the complex numbers and
then generate as many segments as space will allow.

The functions for doing this but neither reconverting to

spherical coordinates nor computing the power (See lines 124-132

of Figure 8.1) are shown in Figure 8.2.

&

(56)

VBEAMI(J]V
Vv BFRAM
ri] INITIALIZE
[21] S«LMDA+4,731666666666667
[3] L«1R+| 0.5%xDIA+S
C4] LOOP:->0Nx\NUM<pRHO
[5] GETMORE
[6]1 ON:+CONVERTx10=pRHO
[7] STI<«NUMLpRHO
rsl XY7«(SI4RHO) POIFNT SI4PHT
[9] RUHO«ST+RHO
[10] PHI<SIVPHT
(111 VNH<HE XY7Z
[12]) KD«ExANG+ xXY7Z
[131 KD« 2 1 2,0 3 1 2 u4 R(3,pKD)okD
[1u] NV«N XY7
(151 VHH<«(KV CROSS VNH[1;3;1),[0.5] NV CROSS VHHT2;;]
[161 VHH< 2 3 1 4 5 R(AR,pVNH)pVNH
£17] VHH«(-4AVNHxXKD),F0.5)1+AVNHXOKD
[18] KD«(2,AR,3,SI)pSI+DS
[19] TI<«I++/VNHXKD
[20] DS+SI+DS
r211 =rLoop
[22] CONVERT:'ADD THE CTS CODE HERE!'
v

VINITTALIZFEL]V
v INITIALIZE
11 'ENTER NUMBER OF STEPS (OF 3 DI'GREES) FOR THEHELTA AND P
gI
[21] AR+140}
[3] 'REFLECTOR DIAMETER=!
fu] DIA<{]
rsl "FOCAL LENGTH =
sl F+{]
71 "WAVCLENGTH ="
[8] K<«02 3+ LMDA«[]
gl I<«(2,AR,3)p0
[10] DS«PHI«RHO«10
f11] TA<«0(3x 1+11+4R)+180
[12] FI<«o(3x 1+1 144R)%180
131 ANG« 3 1 2 8(1 1 2 o, 08($AR)pTA)X(2 1 o ,0ARpFI),[1] 1

VGETMORELO]V

V GETMORE ;J ;NO; APHTI s ARHO
[1] BLD:+0x11>pL
23 Je14]
ral L«14]
[u4] APHI«0O2+110«6xJ
5] PHI«PUI ,APHIx=-0.5+ N0
rel PHO«REO , ARHO«NOpSxJ-0,5
71 DS+«DS ,SxARHOXAPHT
ral +RLDx\NUM2pRHO

FIG 8.2
BEAM (MODIFIED)

(57

rl

r1]

f21
rsl

1]

f11

[1]
[21

vPoIrnTILlv
XYZ«RHO POINT PHI ‘
XYZ«(3,pRHO)p(RHOX20PHT), (RIIOXx10PHI) ,(RHO+UxF)-F

viaralv

7«H XYZ 3 R MR3;SR;T

7¢(©® 1 0 +XYZ)4(2,5R<pR)pMR«(R++#XY7%2)%

0.5

T+« 2 1 o, 0{xMR

2«(2°3 ,8R)p(SPp0),(20131x-7013]),(27231=x7(1;1),(SRpe0
), (7201;1x70231),202:1x-T71 23]

varnlv

vN«ly XYZ2

VHe((T1 0 +XYZ2)+(71 0 +pXYZ)p(, 2 0 4XY7)-(+4XYV7%
2)*0.5),M1] 1

YCROSSTIIV

7«A CROSS B
7e-4((104),[0.5] 284)x(2eB),[0.5] 1eR

vers(ilv .

Z<L CTS RM

Pe(MO[2) 2 2 3 p 121111 "1)x({Me 23 p 0001121
YO[21 2 2 3 p 11 2 2 2 1)0R+« 2 31 & 2 3 2 pFi?
Ge((RC1333,M1] 1 2 0)x®PTN::1,11]7 1 1 0)+.xL

a CTS GIVES THE CARTESIAN TO SPHFRICAL CONVERSION FOR A

SINGI

A TO USE IT REQUIRES CONDITIONING THE ARRAY RESULTING FROM BRI

FIG 8.2 (continued)

. /l\
BEAM (MODIFIED) .

(58)

8.3 Size of Computations and Their Implications

In order to check the revised APL program against FORTRAN
the modified APL program was compared against the FORTRAN H
version. The original data given by Javid in [18] was miniaturized
by selecting a similar number of THETA by PHI increments and not
changing the wave length. The radius and the focal length,
however, were reduced by a factor of 10 (from 30 and 36 feet to
3.0 and 3.6 feet respectively). This decreases the area and hence
the computations by 2 orders of magnitude. The answers would not
be numerically accurate for such a problem but the amountﬁbf
computation would be. The computations were done so as to’
produce results in a cartesian coordinate system to chegk whether
the two programming efforts produced equivalent resuifé ap to
that point.

The results of the first test may be summarized by:

Time o Pfogrém Size
Compile Load Go
SYSTEM and Go (sec+60) (sec:60) (bytes)
APL - 25,681 2980
(7 min, 8sé¢ (125K workspace)
1,60th)
18,886 (Program)
FORTRAN . 7656 2059 99,328 (load module)
(2 min, 7 (34 sec 19| (includes 57,552
sec., 36 60th) 60th)] bytes of COMMON and

22,894 bytes of
subroutine for I/0 etc.

This makes the execute step in FORTRAN 12.47 times as fast as
the APL execution, with the APL prbgram 6.34 times as compact
as the FORTRAN program. Taking into account 160 K partitions for
compiling and about 100 K bytes needed at execute time compared
with using 125 K workspaces in XPI,, APL 1s8.2.91 times as

(59)

costly as FORTRAN in this.case when measured in. terms of core
residency times (byte-seconds), a simple product.of space and
time.

If we expect the time of execution on the actual program to be
increased by a factor of 100 due to increasing the diameter and
focal length by a factor of 10, then one could expect a CPU
execute time of 11 hours, 53 minutes and 22 seconds in APL .

This time was too excessive to permit full execution within
the scope of this work; however, due to the way in which the
area of the dish is divided we may time a portion of the program
and estimate with reasonable accuracy the time.involved.

Since the full test was made with 16 increments for THETA
and 1 for PHI while the "mini" antenna test had 6 increments
for THETA and 3 for PHI, some compensation for the estimated
times would have to be made to compare the two.figures for the actual test.

Based on 83.75 minutes for CPU time (12.9% of the work) the
APL version of the radiation pattern program would run for 10
hours and 49 minutes .

The FORTRAN H program running for 20.57 minutes and.accomplishing
44% of the work has an estimated time of 46.8 minutes. This leads
to a ratio of 13,87.

When we adjust the amount of THETA and PHI points for
which the calculations are done for the "mini" test as opposed to
and the full scale antenna, the APL estimates are consistent with
the change in the amount of work in going from the "mini" antenna
to the full scale problem, two orders of magnitude .

Some observations may be drawn from the above. First,
problems of this size are reasonably large, even in a conventional
sense for a system 360 model 50; the times projected for an
interpretive execution in APL place that mode of solution
beyond practicality. Moreover, the problem is.of such a nature

that attempts to trade space for execution speed by removing loops

(60)

“ lead to difficulties in size.

The present implementation of APL requires the workspace
size to hold all temporary results and removal of explicit looping
by using an array approach for computation implies large (in this
case very large) temporary results. The fact that the algorithm
for this problem can be written so as to have essentially no
loops is of value only if the time and space requirements of the
implementation allow the exploitation of such a formulatior .
Unfortunately, this is not the case at present. Large increases
in workspace size or in physical space for temporaries negates
the favorable code density of APL .

An APL implemented on a machine having virtual memory would
allow for problems of this sort, the availability of large
conceptual arrays while keeping the working set of physical items
within reason. Of course the same system could be applied to the
FORTRAN program, but its use of explicit looping in the algorithm
has less requirement for such automatic paging to manage”ché.déta.

The ability of AAPILto trade time for space is thus, in this
case, somewhat a function of the implementation. A change in
implementation strategy might reduce the cost of interpretation,
aven without 3 virtual machine. Such a change would. probably not
change the overall results, but allowing a greater degree of
looping in the same amount of computer time would permit a
reduction in space requirements. This could make APL more attractive
if the original consideration had been one of sacrificing cou cveles
to gain space. ' ‘ R o

The value of APL to specify and develop algorithms for
implementation in other languages is well established by this
example.

In fact the time to get the new APL version running was less
than that to keypﬁnch and debug the FORTRAN version using its listing.

(61)

9.0 CONCLUSIONS

This study has examined a number of areas of programming
related to scientific problems. These range from the very large-
where the total number of values for temporaries and final results
in a typical problem could run into billions of bytes of storage,
down to the small where both the source code and.the generated
data are in the range of hundreds of bytes or less.

We have been concerned in this range of tasks with the use of
an interpretively based language, APL, in comparison with
compiled code, as generated by FORTRAN, While a number of
problem areas examined have been implemented for both batch and
a time sharing environment, we were primarily concerned with
execution times which give emphasis to the more traditional batch
mode of operation. In that mode of operation much.of the
compilation may indeed be recompilation and in general little is
said of the time and hence the cost of scheduling, compiling and
link editing.

The studies here did not address the issue.of the efficiency
. of programming in APL as opposed to more traditional languages.
Such a study, if objective, would be valuable, but usually
studies comparing an interactive approach versus.batch programming,
even in the same language, often find a greater variation among
programmmers than between methodologies.

Rather, these examples have been pointed toward issues of:

1) timings for both execution and in the FORTRAN environment,
total time for compilation, loading and.execution.and 2) space
requirements.. Toward these ends FORTRAN H OPT = 2 was used as
the compiler, and in both the FORTRAN and APL cases the system
was run witheut confluence.,

Breed and Lathwell [20] have previously reported execution
times for APL which are five to ten times slower than compiled

code. We have not found results which uniformly contradict that

(62)

range of results. There are cases reported herein where compiled
code is from 4 to 15 times as fast as APL with the larger ratios
occuring for very large problems.

There are also cases where APL runs faster than compiled
FORTRAN measured at the execute step. These instances tend to be
those such as inner products and DOMINO and others where
reasonably sophisticated FORTRAN programs are.themselves
, replaced by an APL primitive.

There are a number of instances where.FORTRAN in the Geo step
was faster than APL but compared to Compile, Load and Go, APL
has the advantage. Thus, if there is even reasonable need to
recompile during development, APL has.a cost advantage over the
entire range of use.

APL code is in the order of 10 times as dense as compiled
FORTRAN., The figures do not include data.space in APLin that it
is dynamically allocated but the figures.do.include. the pre-
dimensional space allocated in FORTRAN. Thus, in the present
implementation, when APL is written to take advantage of the
array capabilities of the language, then the.space requirements
for. APL will increase greatly. Of course that space is upper
bounded by the workspace size but the code.density takes an
additional meaning in any system where the:computer,ﬂardware
performs.:a. mapping process in memory hierarchy. independent of
software.. This could be significant in virtual or cache memory
systems.

The size of the APL interpreter is fairly large, 88 K bytes
in APL\360 , but the run time support.packages for FORTRAN
programs are often about 1/4 of that size and in. general. are not
shared among processes. Thus, if multiprogramming is done, after
four or five FORTRAN programs are executing the size of APL

interpreter has probably been used to support. the running programs
anyway.
(63)

In general for small.problems, those that fit well within the
defacto standard 36 .K workspaces,APL compares .very. favorably with
compiled. code, taking into.account :both.time.and space. An
improvement of a factor of 3 or 4 would make APL extremely
competitive over much of the range of situations encountered in
this.report. .Improving the speed of . APL by 50.to 100.per cent
is no doubt obtainable without a major reimplementation.effort.

_Two observations are worth noting as closing remarks.

First, to be at all competitive, algorithms must be written
in "good" APL which often means rethinking the problem, but
even with that in mind APL may be competitive not because it
and the algorithms being executed are well written, .but .rather
because the batch processing is less efficient.than.we have been
will}ng to admit. .

Second, the present version of APL\360.1s.not radically

.changed from the original implementation.which.was. an.experimental
research.tool, implemented to provide reliable support of
terminals. running problems somewhat more. restricted .than those
encountered in normal batch processing. The. accumulated and
published knowledge concerning efficient implementation of APL
is, at this writing, pretty scant. There is not yet.a.broad base
of experience founded on actually.tfying.different implementation
.gtrategies which have been targeted at open competition with
.traditional processing methods.

.While this study does not establish. APL to.be.as.effective
as we would like it to be, it is no. doubt.better.than many.thought
it to be.. We may anticipate research.and. development. to. improve
it, beyond:what we now have. In its use.it.is.certainly
superior in many: areas and use will proebably confirm its effectiveness
in a broader sense, but in the interim we must.agree with. Frank
Plumpton Ramsey that, ''We are in the ordinary. position of. scientists
of having to be content with piecemeal“improvements; we. can make

several things. clearer, but we can not make. anything clear.”

(64)

References

[1] Iverson, K.E., A Programming Language, (1962) John Wiley
and sons, New York.

[2] Falkoff, A.D., K.E. Iverson and E.H. Sussenquth, "A
Formal Description of System/360," IBM Systems Journal,
3,3 (1964), pp. 198-262.

[3] Falkoff, A.D. and K.E. Iverson, APL\360 Users Manual, (1968)
IBM Corporation.

[4] Gilman, L. and A.J. Rose, APL\360: An Interactive Approach,
(1970) John Wiley and Sons, New York.

[5] API\360 - 0S/DOS General Information Manual, IBM Corp.
(GM20-0850) .

[6] Jenkins, M.A., "The Solution of Linear Systems of Equations
and Linear Least Squares Problems in APL," Technical Report
No. 320-2989, June 1970, IBM, New York Scientific Center.

[71 Jenkins, M.A.,"Domino - An APL Primitive Function for
Matrix i version - Its Implementation and Applications,"”
Proceedings SHARE XXXVII, Vol. 1, pp. 380-388.

[8] Westlake, J.R., "A Handbook of.Numerical Inversion and
Solution of Linear Equations,' John Wiley.and Sons, Inc.,
New York, 1968,

[9] Hellerman, H., Digital Computer Systems-Principles, McGraw-
Hill, New York, 1967.

[10] Piatkowski,. Computer. Programs._Dealing with.Finite State
Machines Part IT, Department of. Electrical.Engineering,
University of Michigan, Ann Arbor,.Michigan, July 1967
(AD 658 001).

[11] Foster, Garth H., "Using APL to.Investigate Sequential
Machines," Technical Applications Papers NEREM-70 (70 C 63),
pp. 120-127.

[12] Hartmanis, J. and R.E. Stearns, Algebraic Structure Theory
of Sequential Machines, Prentice-Hall, Englewood Cliffs,
New Jersey, 1966,

[13] Brigham, E.O. and R.E. Morrow, "The Fast Fourier Transform,"
TEEE Spectrum, December. 1967,

[14] Singleton, R.C., "On Computing the Fast.Fourier Transform,"
Communications of the Association of Computing Machinery,
10, 10 (October 1967).

(65)

[15]

[16]

[17]

[18]

[19]

[20]

References Continued

Singleton, R.C., "Algorithm 338-The Fast. Fourier Transform,'
Collected Algorithms of the Communications.of the
Association for Computing Machinery.

Jones, A.L., "FFT - A Fast Fourier Transform," The APL

Quote—Quad.

Javid, M., A Digital Computer Program for Calculating the

Radiating Pattern of an Antenna of Arbitrary Geometry

with Arbitrary Primary Feed, Goddard Space Flight Center,

Greenbelt, Maryland, Document X-200-67-639 (1967).
. Experimental Use of A Programming Language. (APL) at the

Goddard Space Flight Center, (C.J. Creveling, Ed.)

Goddard Space Flight Center, Greenbelt, ‘Maryland,
Document X-560-68-420, November 1968, pp. 9-14.

Kolsky, H., "Problem. Formulation in APL," IBM System
Journal, 8, 3(1969), pp. 204-219, <«

Breed, L.M. and R.H. Lathwell, "The Implementation of
API\360," Interactive Systems of Applied. Mathematics,

(Klerer and Reinfelds, Eds.) (1968), Academic Press,

New York, pp. 390-399.

(66)

APPENDIX A

FAST FOURIER TRANSFORM

PROGRAMS (APL" and FORTRAN)

(67)

vrFTLIY

2«I FFT X3 Jd 33 LMyl 0353034

Pel 0%=0-11",0p5«1-2x~0«1pM«| 2@pJ«c1]l« 14pX
Z+X[;(I+O)+(Hp2)1L+e(M22)TJ—0]

Y« 2 1 o, 00((xI)x0=-J)¢t 14V

2«0l 3= PTEIXLIE 31+ (p2)p (=#XT 3 AT s AT) J+AXT s A0+ S+ M-] x
=0-12xZ[K] Ixel[;a«d+ ,P[KIx0=LTF; 1]

>((M+0)>F«E+1) /1

7«731%0.5

(68)

// '
//C985336 JoB C

// (0643,EE+5+5)4'FFT338!' ,REGION=160K

//PRF EXEC FORTHCLG,PARM,FORT="'SOURCE +MAP,0PT=2"

//FORTLSYSIN DD =

C MAIN PROGRAM TO COMPUTE CACM ALGORITHM 338

C ALGOL PROCEDURE FOR THE

C

C FAST FOURTER TRANSFORM

C

C BY RICHARD C. SINGLETON

C

C

C i 3k 33 3 e s e % 3 e e e 36 sl siesie seofe e 3e 3 s 3R 3k 3 s i s 3K 3R K 3K 3 o 3K e A Al AR A R N A R R R RN R R R R R A X
C

C MAIN PROGRAM FOR INPUT AND OQUTPUT FOR FFT

c USES PROCEDURES COMPLEXTRANSFURM AND REALTRANSFUORM
C B

COMMON A(257)4B(257)ysMyNy INVRSE

REAL*8 A,R

INTEGER*4 MyNysI4JoL

LOGICAL INVRSE

READ (5,1000) L,yINVRSE
1000 FORMAT (2X,18,2X,L1)

N=2%x|

READ (5,1002) (A(I)ysI=1,N)
1002 FORMAT (4D20.10)

READ (5,1002) (B(I),1=1,N)

Nno 1090 J=1,2

M=L

CALL CTRFRM
1090 INVRSE=.NOT. INVRSE

STOP 9999

END

SUBROUTINE CTRFRM

PROCEDURE COMPLEXTRANSFORM (A,B.M, INVERSE)
USES PROCEDURES FFT2,REORDER

OO0

COMMON A(257)4B(257) +MyN, INVRSE
REAL*8 A,B,P,0

INTEGER®4 MyN,JyNAJMNAA

LOGICAL INVRSE

N=2%%M
0=1.000/DSORT(DFLOAT(N})
P=0

IF {,NOT. INVRSE) GO TO 10
0=-0

NA=TABS(N-1)+1.0000001
DO 9 NAA=1,NA
J=N-NAA

9 B(J+1)=-B(J+1)

10 CALL FFT2 (N) -
CALL REORDR (N, .FALSE.)
NA=TABS(N-1)+1.0000001
DO 12 NAA=1,NA
J=N-NAA .
A(J+1)=A(J+1)*P

12 B(J+1}1=B(J+1)*Q
RETURN

(69)

aNeNelel

[aNeNe]

(e XeNe]

240

250

252

260

270

END
SUBROUTINE FFT2 (KS)

PROCEDURE FFT2 (A4ByN,M,KS)
USES NO OTHER PROCEDURES

COMMON A(257),B(257)4sM,N, INVRSE

REAL*8 A,B,AO,Al1,A2,A3,80,B1,B82,83

REAL*8 RAD,C14C2+C3951952yS3,CKsSKySQ
INTEGER*4 MyN,KS,C(9),4,NA,NAA

INTEGERRX4 KOyKl,K27K3vSPANnyJJQK'KBQKNvMMYMK
LOGICAL INVRSE

SQ=0.707106781187

SK=0.382683432366

CK=0.92387953251

C{M+1)=KS
MM=(M/2)%*2
KN=0

NA=TABS{M-1)+1.0000001

DO 240 NAA=1,NA

K=M-NAA

C(K+1)=C(K+21/2
RAD=6.28318530718/(C(1)*KS)
MK=M=-5

LABEL 250 IS L 1IN ALGOL

KB=KN

KN=KN+KS

IF (MM .EQ. M) GO TD 260
K2=KN

KO=C (MM+1)+KB

LABEL 252 1S L2 IN ALGOL

K2=K2-1

KO=KO-1

AO=A(K2+1)

BO=B(K2+1)
A(K2+1)=A(KO+1)~A0
A{KO+1)=A(KO+1)+A0
B(K2+1)=B(KO0O+1)-BO
B(KO+1)=R{KO+1)+BO

IF (KO .GT. KB) GO TO 252
Cl=1.0

$1=0.0

JJ=0

K=MM-2

J=3

IF (K .GE. 0) GO TO 275
GO TO 294

LABEL 270 IS L3 IN ALGOL

IF(C(J+1) .GT. JJ) GO TO 272
JJI=J4J-ClJ+1)

J=d-1

IF (ClJ+1) .GT. JJ) GO TO 272
JJ=JJd-C(J+1)

J=J-1

(70)

o000

(e NeNel

272

275

280

282

284

286

290

294

296

298

K=K+2

GO T0 270
JJ=CJ+1)+4J
J=3

LABEL 275 IS L4 IN ALGOL

SPAN = C{K+1)

IF (JJ .EQ. 0) GO TO 282
C2=JJ*SPAN*RAD
C1=DCOS(C2)

S1=DSIN(C2)

LABEL 280 IS L5 IN ALGOL

C2=C1*%2=51%%2
$2=2.0%C1*S1
C3=C2%C1-S2%*S1
$3=C2*%S1+S2%*C1
NA=TABS(SPAN-1)+1.0000001
DO 290 NAA=1,NA
KO=KB+SPAN-NAA
K1=KO+SPAN

K2=K1+SPAN

K3=K2+SPAN

AO=A(KO+1)

BO=B{KO+1)

IF{S1 .NE. 0) GO TO 284
Al=A(K1+1)

B1=B(K1l+1)

A2=A(K2+1)

B2=B(K2+1)

A3=A(K3+1)

B3=B(K3+1)

GO TO 286
Al=A({K1+1)*C1-B(K1+1)*51
Bl1=A(K1+1)*S1+B(K1+1)*C1l
A2=A(K2+1)*C2-B(K2+1)%S2
B2=A(K2+1)*S2+B(K2+1)*C2
A3=A(K3+1)*C3-B(K3+1}*§3
B3=A{K3+1)*S3+B{K3+1}*C3
A(KO+1)=A0+A2+A1+A3
B(KO+1)=RO+B2+B1+B3
A(K1+1)=A0+A2-A1-A3
B(K1+1)=B0+B2-B1-B3
A(K2+1)=A0-A2-B1+R3
B(K2+1)=B0-B2+Al1-A3
A(K3+1)=A0-A2+B1-B3
B(K3+1)=B0-B2-A1+A3

IF (K .GT., 0) GO TO 296
KB=K3+SPAN

IF (KB .LT. KN) GO TO 298

LABEL 294 IS L6 IN ALGOL

IF (KN .LT. N) GO TO 250
RE TURN

K=K=2

GO TO 275

IF (J .EQ. 0) GO TO 300

(71)

OOO0O0

OO0

[aleNel

300

302

450

454

458
460

464

468

472

J=J-1

C2=Cl1

IF (J .EQ. 1) GO TO 302
C1=(C1-S1)*SQ
S1=(C2+S1)*SQ

GL TO 280

K=2

J=MK

GO TO 270
C1=C1#CK+S1*5K
$1=S1*%CK~C2%*SK

GO TO 280

END

SUBROUTINE REORDR (KS,REEL)

PROCEDURE REORDER (A4B,N,M,KS,REEL)
USES NO OTHER PROCEDURES

COMMUON A(257),8(257)4MyN, INVRSE
REAL*8 A,B,T

INTEGER*4 MyNyKS,C(9),LST(9),NA,NAA
INTEGER*4 [4J9JJyKyKK o KByK2yKUyLIM,P
LOGICAL INVRSE,REEL

C(M+1)=KS
NA=IABS(M~1}+1.0000001

DO 450 NAA=1,NA

K=M=NAA+1

C(K)=C(K+1)/2

J=M-1

p=J

KB=0

1=KB

IF (REEL) GO TO 454

M=M-1

GO TO 460

KU=N-2

NA=TABS(KU/2)+1.0000001

DO 458 NAA=1,NA

K=NAA%2-2

T=A(K+2)

A{K+2)=B(K+1)

BIK+1)=T

LIM=(M+2)/2

IF (P .LE. O) RETURN

LABEL 464 IS L IN ALGOL
K2=C(J+1)+KB
KU=K2
JJ=C{M=-J+1)
KK=KB+JJ

LABEL 468 IS L2 IN ALGOL
K=KK+JJ

LABEL 472 IS L3 IN ALGOL
T=A(KK+1)
A(KK+1)=A(K2+1)

(72)

A(K2+1)=T
T=B(KK+1)
B{KK+1)=B(K2+1)
B(K2+1)=T7
KK=KK+1
K2=K2+1
IF (KK «LTe K) GO TO 472
KK=KK+JJ
K2=K2+JJ
IF (KK .LT. KU) GO TO 468
IF (J +LE. LIM) GO TO 476
J=J=-1
I=1+1
LST(I+1)=J
GO TO 464

476 KB=KZ2
IF (I .LE. 0) GO TO 480
J=LST(I+1)
I=1-1
GO TO 464

480 IF (KB GE. N) RETURN
J=P
GO TO 464
END

(73)

APPENDIX B

THE FORTRAN VERSION
OF BEAM FOR THE
NASA RADIATION PATTERN

PROGRAM

(74)

// :

//C91540 JOB) C
// {0643 ,EE,+30,40),'BIM423 ' ,REGION=200K

// EXEC FORTHCLG,PARM.,FORT=*SOURCE,MAP,0PT=2"

//FORTLSYSIN DD =

C

C wxdkxkdkx%DRIVER PROGRAM FOR COMPUTING RADIATION PATTERNRRFAHERIX
C
. COMMON A.AXI,AXR'AYI'AYRyAZIyAZR.A1'A29A3,A49A5vA6vA79 By AR, BR
CUOMMLIN CAyCByCELNUMyCFIOCFRvCGvCKDyCKRoCR[vCRR,CTA,CTI,CELAST
COMMON COSTALCPHIZSINTA,SPHI

COMMON Dl,DZyD3yDIA,DPHI'DRyDRHﬂyDRR,DRI,DTR,DTI,DFR,DFI

COMMON EllvElZvE13yE211E22vE239E319E321E33vEX9EY,EZ

COMMON FeF14FLDAyFNUMyFRING,FRyFRCsFZ4GR,GyBIG

COMMON HoyHX yHY yHZ yHXF 4HYF yHZF

COMMON ISvIEyITleT291T3yIT47IT51IT6,IT791T8'IF191F2vIF3yIF4,IF5
COMMON IF6,IF7'IFByNZyN39N49N59N69N7,IRM,LS,L69L7vL84L99L10
COMMON I,Il,ID,IDSUM.IEND'IENDD,IFI,INvIR.IRl,ISUM,ITI,IBIG
COMMON JlevJBlyJBIGvJRINGyLIR9L]RlyLSW9L11L29L3,L4'MyIlST

COMMON NFI9NFP,NPR,NR'NRING,NRINGI'NRSG,NSUMDS,NT'NTA'NU,NLLR,NUM
COMMUN PXprQPZ :

COMMON PHI1PUNER9Q,QD,QFI,OR,PHASE,Rl'RZyRP,RHO'RHOZ

COMMON SAQSBvSFIvSGySKD}SKR?STAyTAyTPY1VDSJ

COMMON X'XIyXIULyXR9XRULvaYIyYIULyYR,YRULvaZ]1ZIUL92R12RUL
COMMON NRI(QOO),NSUM(400)7NUMSUM(400)yNUMT(ZSO)yNUMF(ZSO)

COMMON CBSTD(250),CBSFD(250) '
COMMON VX(lOOO)yVY(lOOO)oVZ(lOOO)9VDS(1000)'VHXR(1000)yVHXI(lOOO)
COMMON VHYR(IOOO)’VHYI(IOOO)vVHZR(lOOO)9VHZI(1000)’VNXZ(1000)
COMMON VNYZ (1000)

DIMENSION PWR(250)

DIMENSION FV{250,6)

DIMENSION JCK(54)

Redok %Rk ERBEGIN READING®kkkkksik

READ(S5440)NTAGNFI ¢MsNU,L3
FORMAT(5110)
IF(INTA.EQ.O0) GO TO 8060
‘ READ(5,41)DIA,DIA1,DIA2,A1,FRC,FLDA,F
41 FORMAT(4F10.5yF14.10,2F10.5)
READ(5,403)A4ByG+EXsEY,EZ4D1,D2,D3
403 FORMAT(9FB.3)

HSNOO0O0

[@ RN +]

READ(5,402) (CBSTD(1),1=14NTA)
READ(5,402) (CBSFD(I),I=14NFI)
402 FORMAT(8(1X,FB.3))
C
C wxtxwk k% READ THE FIELD POINTS WHICH ARE NOT TO BE CUMPLETED %%
C
READ(5,877) (JCK(J)yJ=1454)
877 FORMAT(1814)
C
c xxkkkakkEND OF READT NG %% %k
c
C *******INITIAL[SE********
C

PO 4321 1=1,250
DO 4321 J=1,6
FV(I,J)=0
4321, CONTINUE
DO 205 ID=1,250

(75)

205

aXealel

1006

9876
43
A

9874

45

46

9871

9869
1003
9873

4021

9872

1

eEeEaNaEaiiel

PWR(ID)=0.0
NUMSUM(1)=0

L5=0

L6=0
JRING=1000
LIST=1000

sxkxkxxxBEGIN PREFACE WRITINGH#eiomksx

WRITE (641006)

FORMAT(1H1)

WRITE(6,9876) ‘

EORMAT(/3X,66HTHE DATA CARDS READ,THEIR CORRESPONGING PARAMETERS
1AND FORMAT ARE)

WRITE(6,43) ,

EORMAT(/3X,T2H1234567810123456782012345678301234567840123456785012
134567860123456787012)

WRITE (6944)

EORMAT(/3X,72HND. TETAS NO. FIS ARRAY SIZE CUS**N DETAILS YES

1 OR NC)

WRITE(H,987T4)INTANFTM,NU,L3

FORMAT(3X,5110) .

WRITE(6,45) . .
FORMAT(/3X,76HDIAMETER HOLE DIAl HOLE DIA2 DEVIATION SCALE

1 WAVELENGTH FOCAL DIST.)
WRITE(6146)DIA901A1vDIAZyAlvFRC,FLDAyF

FORMAT(3X y4F10.54F14,10,2F10.5)

WRITE(6,9871)
FURMAT(3Xy4HALFAy4X,4HBETA,4X,4HGAMA,7X'1HX,7X,1HYy7X.1HZ.7X,2HDI
1y 6X32HD246X,42HD3)

NRITE(6,9869)A98,G,EX,EY'EZ901,02,03

FORMAT(3X,49F8.3)

WRITE(6,1003)

FORMAT(1H)

WRITE(6,9873)

FORMAT(3X,28HTETA DEGREES OF FIELD POINTS)
WRITE(694021)(CBSTD(I)91=1yNTA)

FORMATI(3X,8(1XyF8.3))

WRITE(6,1003)

WRITE(649872)

FORMAT(3X,26HF1 DEGREES OF FIELD POINTS)
WRITE(644021)(CBSFD(T1)s1=14NFI)

WRITE(6,60)] :
FORMAT(/3X,56HFOLLOWING POINTS IN THE TETA-F1 MATRIX HAVE BEEN OMI
1TTED)

WRITE(6461)(JCK{J)sJ=1+54)

FORMAT(3X,1814)

wxsokiokxkEND OF PREFACE %% kmkkkx

snxkrktsCALCULATE ELEMENTS OF EULER MATRI Xk #kkki

AR=A*DR
cA=CNS(AR)
SA=SIN(AR)
BR=B*DR
CR=COS(BR)
SB=SIN(BR)
GR=6G*DR

" CG=COS(GR)

(76)

SG=SIN(GR)

E11=CG*CA-CB*SA*5C

E21==SG*CA-CB*SA*CG

E31=SB%*SA
_E12=CG*SA+CB*CA*S6

E22==-SG*SA+CB*CA*CG

E32=-SB*CA

E13=S6G*5B

E23=CGx*SH

E33=CHB

PX=D1*E11+D2%*E21+D3*E31

PY=D1%*E12+D2%E22+D3*E32

PZ=D1*E13+D2%E23+D3%*E33

sk kX REGIN SEGMENTAT TON ks %

[aNeaKe]

D3=(1.=-D1%%2-DN2%%2) %% .5
TP1=2.%3.141592654
PDR=TPI1/360
Q=TPI/FLDA
DRHO=FLDA/FRC
NR=(DIA/2.)/DRHO
L7=(DIA1/2.)/DRHOD
L8=(DI1AZ/2.)/DRHO
WRITE(6,102)NR
102 FORMAT(///+3Xy25HREFLECTOR IS DIVIDED INTO,14,7H RINGS.)
1=0
J=0
13 [=1+1
IF(1.GT.999) GU TO 701
ISUM=0 .
12 J=J+1
IF{J.GT.NR) GO TO 10
[DSUM=6%J
IF(IDSUM.GT.M) GO TO 14
[SUM=TSUM+TDSUM
IF(ISUMLGT.M) GO TO 11
GU TO 12
11 11=1+1
NRI(I1)=J-1 ' h
NSUM(T11)=1SUM=TDSUM
J=J-1
G0 TO 13
14 WRITE(A,103)J4M
103 FORMAT(//2X,37H THE NUMBER OF ELEMENTAL AREAS IN THE,T4,20H RING I
1S LARGE THANsI5,42H JWILL CONSIDER PART UF RINGS AS SEGMENTS.)
IF(ISUMLEN.O) GO TO 876
[1=1+1
NSUM{I1)=1SUM
NRI(I1)=J-1

1=11
L6=1
R76 L5=1
JRING=J
11ST=11+1
51 NDIV=IDSUM/M

NREM=IDSUM=NDIV*M
PO 511 ISK=1,NDIV
11=11+1

NRI(I1)=J"

(77)

511

RT5

10
104

515
15

201

1009

1008

1021

1031

7113

7114

7115

OO0

OO0~

NSUM(T1)=M

CONTINUE

IF(NREM.EQ.O) GO TO 875

I1=11+1

NRI(TI1)=J

NSUM(ET1)=NREM

J=J+1

[F(J.GT.NR) GO TO 10

IDSUM=5%J

GO TU 51

WRITE(6,104)

FORMAT(//2X+55H CONTRIBRUTION OF ALL REFLECTOR RINGS WILL BE PROCES
1SED.)

IF(L5.EQ.1) GO TO 515

I11=1+1
NRI(TI1)=
NSUM(TY)

=11
LIR=1
LIRI=LIR=-1

NRT(1)=0

NSUM(1)=0

NSUMDS=0

DO 201 IN=2,LIR

NSUMDS=NSUMDS+NSUM(IN)

WRITE(6,1009) NSUMDS,LIRI WM

FORMAT(//3X,35HTHE TOTAL NO. OF AREAS TS NSUMDS = ,I8,
128H,y ND. OF SEGMENTS IS LIRI = 4I346Hy M = s 1442H o)
WRITE(6,1008)D1A,FLDA,FRC

FORMAT(//3X,37THRESULTS BASED ON INPUT DATA, DIA, = yFRG,
115H, WAVELENGTH = ,F8.4,31H ,SIDE OF ELEMENTAL AREA FRC = ,FR,5,
215H OF WAVELENGTH.)

WRITE(641021)F 4 A4ByG4EX,EY,EZ

FORMAT (//3X,2HF=,F8.3,6HyALFA=,FR,3,6H,BETA=,F8.3,6H, GAMA=,F8,.3,
120H, TRANSLATIONS ARE $X=yFBo343H,Y=,FB,3,3H, 7=yF8.3,2H)
WRITF(6,1031)D1,D2,D3

FORMAT(//3X434HTHE POLARIZATION COSINES ARE D1 = +yFBaSyb6H,D2 =
1F8.546HsD3 = 4FB.542H o}

WRITE(6,7113)

FORMAT(//3X,7?2HFOLLOWING ARE THE ORDER NUMBERS OF THE LAST RINGS 1
1IN SUCCESIVE SEGMENTS.)

WRITE(6,7114)(NRI(T),41=2,LIR)

FORMAT({/ 21(3X,13))

WRITE(H,7115)

FORMAT(//3X+67THFOLLOWING ARE THE NUMBER OF ELEMENTAL AREAS IN SUCC
1FSSIVE SEGMENTS.)

WRITE(6,7114) (NSUM(T),1=2,LIR)

J-1
=1SUM

xRk REND OF SEGMENTAT [ON# sk
xaxuk ks ¥BEGIN PREPARATION FOR SETUP ks
BIG=0
IR=0
14=0
IR=IR+1
sk kxkALL SEGMENTS DONE %3k sk 3 %k

1IF(IR.EQ.LIR) GO TO 300

(78)

52

aNelel

WRITE(6,1003)
NFP=0

IR1=1IR+1
IF{IR1L.GE.I1ST) GO TO 5051
NLLR=NRTI(IR)
NPR=NRT(IR1)
NRSG=NPR-=NLLR

TEND=0

1=1
J=-1

J=Jd+1

IF(J.EQ.NRSG) GO TO 3
NRING=NRI(IR)+J+1
LSW=0
NRING1=NRING+1
FRING=FLOAT(NRING)
FRING=FRING=-.5
RHU=FRING*DRHLU)
RHO2=RHO**2

=f-1

TENDO=TEND
NUM=6%NRING

FNUM=NUM
DPHI=TPI/FNUM
TEND=TENDO+NUM
NUMSUMINRING1)=TEND
IF(NRING.GT L7 .ANDNRING.LT.L8B) GO TO 24

wwerr xR SETUP RING BY RINGH®sssksssk

CALL SETUP
GU TO 1

=TEND+1
GO TO 1

wkdkuxx %R ING CONTAINS MORE THAN ONE SEGMENTHkkssskx

NPR=NRT{(IR1)

NLLR=NPR=-1

NRSG=1

NRING=NRT (IR1)

LSW=0

NRING1=NRING+1
FRING=FLUAT(NRING)
FRING=FRING=-.5

RHU=FRING*DRHO

RHO2=RHO**2

NUM=6%NRING
IF(NRI(IR1).EQ.NRI(IR)) GO TO 53
CELNUM==.5
CELAST=FLOAT(NSUM(IR1)) @
1=0

FNUM=NUM

DPHI=TPI/FNUM
NUMSUM(NRING1)=NSUM(IR1)
IEND=10000000
TF(NRING.GT«L7«AND.NRING.LTLL8) GO TO 25

sxckxrEkRSETUP WHEN RING CONTAINS MUR THAN ONE SEGMENT::

A, (79)

CALL SETUP . N

C
GO T0 3
25 I=TEND+1
GO 70 3
53 CELAST=CELAST+FLOAT(NSUM(IR]1))
GO TO 52
C
C gk k%BEGIN WITH FIELD POINT S¥kmxmxnskx
C
3 JAK=0

DN 901 IFI=1,NFI
DO 901 ITI=1,NTA
JAK=JAK+1
DO 903 JA=1,54

903 IF(JAK.EQ.JCK(JA)) GO TO 901

NEP=NFP+1
NUMF (NFP)=TFI
NUMT(NFP)=1T1

E wx%kaRkXHEADING HAS BEEN WRTTTEN#® &k

‘ IF(L4.EQ.1) GO TO 2222

E wamsrxrxkPRINTING OF DETAILS NOT REQUIRED#x#sokssn

‘ IF(L3.E0.1) GO TO 2222

E sxsrkkxkWRITE READING FUR DETAILED DATA TABLE#ssxssiuss
C

WRITE(6,1006)
WRITE(6,1003)
WRITE(6,1003)
WRITE(6+1034)
1034 FUORMAT(3X,89HFOLLOWING TARLE GIVES VARIOUS FIELD VALUES FOR INDICA
ITED FIELD POINTS AND SEGMENT NUMBERS)
WRITE(641208)21A,FLDA,FRC
1208 FORMAT(//3%X,37HTHEY ARE BASED ON INPUT DATA, DIA. = ,FB.4,
115H, WAVELENGTH = ,F8.4431H ,SIDE OF ELEMENTAL AREA FRC = ,F8,5,
215H OF WAVELENGTH,.)
WRITE(641021)F A4ByGyEX,EY,EZ
wRITE(6,1031)D1,02,D3
WRITE(6,1003)
WRITE(6,1003)
WRITE(645555)
5556 FORMAT(//3Xy12HFIELD VALUESs27Xs3HERR,BX3HERT 48X, 3HETRyBX43HETI,
18X y3HEFR 98Xy 3HEFI 46X 3y SHPOWER ¢ 4X s 10HTETA PHASE)
WRITE(6,1003)
WRITE(645656)
656 FORMAT(3X,34HPOINT NO. TETA F1 SEGMENT)

sxzar s HEND OF HEADER WRITINGH sk

wxsaxkrxSTART INTEGRATION PROCEDURE ##% %% 5%

OO Oy

L4=1
2222 XR=0.
XI=0.
YR=0.

(80)

YI=0.

IR=0.

21=0.
TA=CBSTD(ITI}*DR
FI=CBSFD{(IFI)*DR
STA=SIN(TA)
CTA=C0OS(TA)
SFI=SIN(FI)
CFI=COS(FI)

sk [NTEGR A TE sk ook sk

OO0
3

CALL ADDLUP

wakxesxxTRANSFORM TO SPHERICAL COORDINATESH* %k *%k%

r2O00

CRR=STAXCFIAXR+STA*SFI*YR+CTA*ZR

CRI=STAXCFI*XI+STA*SFI®*YI+CTA*Z]

CFR=CFI*YR=-SFI*XR

CFI=CFI*YI-SFI*XI

CTR=CTA®CFI*YR+CTA*SFI*YR-STA*ZR

CTI=CTA%CFI*XI+CTA®SFI®*YI-STA%*Z]

FVINFP,1)=FV(NFP,1)+CRR

FVINFP,2)}=FVINFP,2)+CRI

FV{NFP,y3)=FVINFP,3)+CTR

FVINFP44)=FVI(NFP,4)+CTI

FVINFP45)=FV(NFP45)+CFR

FVINFP,6)=FVI(NFPy,6)+CF1

IF(FVI(NFP,y3)+EQ.0.0 +OR. FVINFP,4).EQ. 0.0) GO TO 27
PHASE=ATAN2(FVINFPy3)4FVINFP,4)) /DR

GO TO 28

27 PHASE=0.0

28 POWER =FV(NFP 3)%%2+FV (NFP 4) %%2+FV(NFP,5)%%2+FV(NFP,6)%%2
IF(IR1.NE.LIR) GO TO 55

PWR (NFP) ZFEVINFP 3)%%24+FVINFP 4) %% 2+FV(NFP,5) *%24+FV(NFP,6)*%2

wxksdkxxDETAILS OF DATA NOT REQUIRED**# ks
IF(L3.EQ.1) GO TO 901

sxxxsxixWRITE COMPONENTS OF ELECTRIC FIELD®®#xiixx

OO0 OO0
W

WRITE(6,5655)NFPCBSTD(ITI) yCBSFDUIFT) s IR,FVINFP, 1) FVINFP,2),
LFVINFP,3) ¢FVINFP,4) 4FVINFP,5) 4 FVINFP,6),POWER s PHASE
5655 FORMATI3X,I1395XsFTe291XsFTe293X,13,3X48(F10.2,51X))
901 CONTINUE

C
C sokuicokkxSTART WITH A NEW SEGMENT ¥k
C
GO TO 16
C
C sk axALL SEGMENTS AND FIELD POINTS DUNEk#ks sk
c 4
C wusxsukxE [ND THE DIRECTION OF MAXIUM RADTIATED POWER#®xkkxxx
<
300 DO 500 I=14NFP
IF(PWR(1).GT.BIG) GO TO 501
GO TO 500
501 I1BIG=I
RIG=PWR (1)

(81)

500 CONTINUE
DO 502 I=14NFP ‘
IF(PWR(T).EQ.0,0) PWR(I)=0.000000001
PWR(T)=10,*ALOGIO(PWRI(T)/BIG)

502 CONTINUE
IFI=NUMF (IBIG)
1TI=NUMT(IBRIG)
C
C kmiror kR END OF COMPUTAT TON# s sk
C i
C wassxrskWRITE HEADING FOR DB TABLE Rk
C
15=1
IE=8

NTAB={NFP-1)/8+1
WRITE(6,1006)
WRITE(6,1010)CBSTD(ITI)CBSFD(IFT)

1010 FORMAT(//3X,46HMAXIMUM POWER IS RADIATED IN DIRECTION TETA = ,F8.3

145H,FI= 1F8L.3)
WRITE(641008)DIA,FLDA,FRC
WRITE(6,1021)F ¢AsByG4EXyEYEZ
WRITE(6,41031)D1,D2,D3
WRITE(6,3333)

3333 FORMAT(//3X,118HIN THE FOLLOWING TABLE EACH ROW GIVES THE PUWER IN
1 DR. THE ZEROD DB REFERENCE 1S THE POWER RADIATED IN THE DIRECTIO
2N)

WRITE(643334)CRSTD(ITI)LCBSFD({IFT)},BIG

3234 FORMAT(/3X,7HTETA = ,F8.3,10H AND FI = ,F8.3,25H AND HAS ABSOLUTE

1 VALUE ,F12.3)

DO 208 I=1,NTAB

N2=1S+1

N3=N2+1

N4=N3+1

N5=N4+1

MN6=N5+1

N7T=N6+1
WRITE(6,6666)1SeN2sN33N4yNS,N6yNT,IE

6666 FORMAT(//3X,18HFIELD PUINT 22X,8(13,9X))

IT1=NUMTI(IS)

IT2=NUMTI(NZ2)

I T3=NUMT(N3)

T T4=NUMTI(NG)

I T5=NUMT(NS5)

1 T6=NUMTING)

I T7=NUMT(NT)

I118=NUMT(IE)

IF1=NUMF(IS)

IF2=NUMF (N2)

TF3=NUMF (N3}

1F4=NUMF (N4)

1F5=NUMF (N5)

[F6=NUMF (N6)

IF7=NUMF (N7)

IF8=NUMF(IE)
WRITE(6'9222)CR§TD(IT1)vCBSTD(ITZ)yCBSTD(IT3)yCBSTD(IT4),CBSTD(IT5
1),CBSTD(ITH)CBSTD(ITT),CBSTD(I1TB)

9222 FORMAT(3X412HTETA DEGREES+6X98F12.6)

WR[TE(6,9333)CBSFD(IFI)’CBSFD(IFZ),CBSFD(IF3)vCBSFD(IF4)9CBSFD(IF5
1) ,CBSFD({IF6) yCBSFD(IFT)CBSFD(IF8)
9333 FORMAT(3X,10HF] DEGREES,8Xy8F12.6)

. (82)

9672
1001
9673
208

8000

8002

8050
8001

8060
8061

701
7111

18

WRITE(6,1003)

WRITE(6,1003)

WRITE(641001)(PWR(J) +J=1S,IE)

FORMAT(3X,11HDBR LEVEL 14X93Xy8F12.6)

1S=1S5+8

IE=1E+8

CONTINUE

WRITE(15,8000)

FORMAT{(5X43HPHI 4 10X4,5HTHETA,10X,2HDB)

WRITE(15,8002) NFP

FORMAT(3X,13)

DO 8050 I=14NFP

KT=NUMTI(I)

KF=NUMF (1)

WRITE(15,48001) CBSFD(KF)CBSTD(KT)4PWR(T)
FORMAT(4X4F1l24693XyFl2e6493X,F1246)

GO TO 29

WRITE(15,8061)

FORMATI(5X,3HEND)

RE TURN

WRITE(6,7111)

FORMAT(//3X435HTHE RING DIMENSION IS INSUFFICIENT.)

RETURN

END

SUBROUTINE SETUP

COMMON A, AXI+AXR,AYI,AYRyAZI,AZR,Al,A2,A3,A4,A5,A6,A7, ByAR,BR
COMMON CA4JCByCELNUMyCFTI CFRyCGyCKDyCKRH4yCRT4CRRHWyCTALCTICELAST
COMMON COSTALCPHIZSINTA,SPHI

COMMON D14D24s034DI1A,DPHI yORyDRHO4DRR4DRI yDTRyDTIyDFR,4DFI
CUOMMON El114,F124E13,E21,E22,E234E31,E32,E33,EX,EY,EZ

COMMON FoFlsFLDASFNUM FRINGyFRyFRC4FZ 4GR4G,BIG

COMMON HyHXyHY yHZ yHXFyHYFHZF .

COMMON ISyIEZITLyIT2431T3,1T4,1T5,1T6,1TT741T8,IF1,1F2,IF3,1F4,IF5
COMMON TF64IFTosIF8eN2yN3yNG NSy NEyNTSIRMyLSyL6,L7,L8,L9,L10
COMMON T4I114IDsIDSUMZTENDLIENDOSTIFTIZINsIRyIRL1,ISUMLITI,LIBIG
COMMON J9J19JBY 4 JUBIGYJRINGWLIRyLIRYIWLSWoLYyL29yL34L4yMaI1ST
COMMON NFT ¢gNFP 4NPR ¢yNRyNRINGyNRINGLyNRSG¢NSUMDSyNT¢NTA,NUyNLLR ¢NUM
COMMON PX4PY,4PZ

COMMON PHI POWER,Q4QD+QFI yQR4PHASE WR14R2,RP,RHO,RHO2

COMMON SAySBySFI4+SG¢ySKDySKRySTA,TA,TPI,VDSJ

COMMON X o XT ¢ XTUL ¢ XR ¢ XRUL9Y oYl YIULyYRyYRULyZ4721421UL4ZRyZRUL
COMMON NRI(400) yNSUM(400) yNUMSUM(400) 4NUMT(250) yNUMF(250)
COMMON CBSTD(250),CBSFD(250)

COMMON VX(1000),VY(1000)},VZ{1000),VDS{1000)4VHXR(1000),VHXI(1000)
COMMON VHYR(1000),VHYI{1000),,VHZR(1000),VHZI(1000),VNXZ(1000)
COMMON VNYZ(1000)

\i=1+1

IF(ILEQ.(IEND+1)) RETURN

IF(IR1.GEL.I1ST) GO TO 17

CELNUM=FLOAT(I-IENDO)

CELNUM=CELNUM-.5

PHI=DPHI*CELNUM

CPHI=COS(PHI)

SPHI=SIN(PHI)

X=RHO*CPHI

XEX=X—-EX

vX(I)=X

Y=RHO*SPHI

YEY=Y-EY

VY(I)=Y

(83)

OO0

OO0

[aEeNe!l

IF(LSW.EQ.1) GO TO 31
VZ(NRING)=RHO2/(F*4.)~-F
2=VZ (NRING)

lEl=7-EL

R2=RHO2+Z *%2

R1=R2%%,5

IR1=7-R1
VOS(NRING)=TPI*((RHO+.5%DRHO)**2=(RHO=.5%DRHO) **2)/ (FNUM*2,)
LSW=1

VNXZ(I)=X/ZR1

VNYZ (T1)=Y/ZR1

xxxxx¥x%RP 1S THE DISTANCE FROM THE PHASE CENTER TO ELEMENTAL A

RP=(XEX*%2+YEY*%2+7EZ*%2)*%,5
COSTA=(E31%XEX+E32%YEY+E33*ZEZ)/RP

xx%%k&x%FR IS = COS TETA%*%NU/RP,THE PATTERN FACTOR OF SOURCE**

FR=(COSTA**NU)/RP
CR=Q*RP-A1%DR#*(1.-COSTA)
CKR=COS(CR)

SKR=SIN(CR)

%xskrkkkHX yHY yHZ ARE THE COMPONENTS OF H IN DIRECTION OF H FIEL

HX=YEY=*PZ-ZEZ*PY

HY=ZEZ*PX-XEX*PZ

HZ=XEX*PY=-YEY*PX

He (HXFX24+HY % 2+HZ %% 2) %%, 5

HXF=HX*FR/H

HYF=HY%*FR/H

HZF=HZ*FR/H

VHXR{I)= HXF*CKR

VHXT (1)=-HXF*SKR

VHYR(I)= HYF*CKR

VHYI (I)=-HYF%SKR

VHZR(I)= HZF*CKR

VHZI(1)=-HZF*SKR

GO TO 2

CELNUM=CELNUM+1.,

[F(CELNUM.GT.CELAST) GO TO 19

GO TO 18

CELNUM=CELNUM-1.

RETURN

END

SUBROUTINE ADDUP

COMMDN Ay AXI o AXR,AYI,AYR,AZ1,AZRyA1,A2,A3,A4,A5,A64A7, ByAR,BR
COMMON CA,CByCELNUMyCFI4CFR,CGyCKDyCKRyCRI,CRR,CTA,CTI,CELAST
COMMON COSTA,CPHI,SINTA,SPHI

COMMON D1,0D24D3,D1A,0PHI,DR,DRHOyDRR DRI 4DTRyDTI4DFR,DFI
COMMON E11,E12,E13,E21,E224E23,E314E32,E33,EXyEY,EZ

COMMON FoF1,FLDAsFNUM,FRINGsFRyFRCyFZsGRyG,4BIG

COMMON HyHXoHY yHZ yHXFoHYFyHZF

COMMON IS,IEZITY IT2,IT3,1T4,IT5,1T641T7,1T8,IF1yIF24IF341F4,yIF5
COMMON TF64IF74IF8yN2yN3yN4yNSyNH6yNT 3y IRMyLS59L64LT74L84L9yL10
COMMON T,11,IDsIDSUMGTEND,IENDOyIFI3INyIR,IR1,ISUMLITI,IBIG
COMMON JyJlsJBlsJUBIGyJRINGyLIRyLIRY1yLSWyLLsL2yL34L4s4MyI1ST
COMMON NFT1,NFP4yNPRyNRyNRINGyNRINGLsNRSGyNSUMDS yNT,NTA,NU,NLLRyNUM
COMMON PX4PY,yPZ ’

(84)

COMMON
COMMON

PHI yPOWER yQ4QD+QFI yQRyPHASEsR14R24RP4RHO4RHO2
SAySBySFI4SGySKDySKRySTA,TA,TPI,VDSJ

COMMON Xy XI g XTUL 9XR9XRUL 9Y 9YI s YIULyYRyYRULyZ 42 1,Z1ULyZR, ZRUL
COMMON NRI(400)4NSUM(400) yNUMSUM(400) NUMT(250)+NUMF(250)
COMMUN CBSTD(250),CBSFD(250)
COMMON VvX(1000),VY(1000),vVZ(1000),VDS(1000),VHXR(1000),VHXI(1000)
COMMON VHYR(1000),VHYI{1000),VHZR(1000),vHZI(1000),VNXZ(1000)
COMMON VNYZ(1000)
1=0
J=NLLR
7 J=Jd+1
Ji=J+1
IF{JeGTNPR) RETURN
VDSJ=VDS(J)
XRUL=0.
XIUL=0.
YRUL=0.
YIUL=0
ZRUL=0.
Z1UL=0.
37 I=1+1
IF(1.GT.NUMSUM(J1)) GO TO 38
IF{JeGTaL7.ANDJ.LT.L8) GO TO 37
CO=0*(VX(I)*CFI*STA+VY (I)*SFI%*STA+VZ(J)}*CTA)
CKD=C0S(CD)
SKD=SIN(CD)
AXR=VNYZ (I)%VHZR(I)}=-VHYRI(I)
AXTI=VNYZ(I)*=VHZI(I)~-VHYI(])
XRUL=XRUL+ (AXR*CKD-AXI*SKD)
XTUL=XTUL+(AXR*SKD+AXI*CKD)
AYR=VHXR(T1)=VNXZ (I)*VHZR(])
AYI=VHXI(I)=VNXZ(I)*VHZI(I)
YRUL=YRUL+(AYR*CKD-AYI*SKD)

YIUL=YI
AZR=VNX
AZI=VNX
ZRUL=ZR
Z1uL=21
GO TO 3
38 XR=XR+X
XI=XI+X
YR=YR+Y
YI=YI+Y
IR=2R+Z
11=21+12
I1=1-1
GO TO 7
END
/%
//GO.FTO7FOO1
//G0.FT06FO001
//GO.FT15F001
//GOLFT05F001
16
30.00000
0.000 0.
0.000
8.000
0.000

UL+ (AYR*SKD+AYI*CKD)
Z{T)*VHYR(I)=VNYZ(I)*VHXR(])
ZII)*VHYT(T)=VNYZ (I)*VHXI(1])

UL+ {AZR*CKD=-AZI*SKD)
UL+ (AZR*SKD+AZI*CKD)

7
RUL=*VDSY

TUL*VDSJ
RUL*VDSJ

TUL*VDSJ

RUL*VDSJ

TuL*vnsSy

DD SYSOUT=B,DCB=(RECFM=F,BLKSI1ZE=80)

DD SYSQUT=A,DCB=(RECFM=UA,BLKSIZE=133)

DD SYSOUT=A,DCB=(RECFM=UA,BLKSIZE=133)

DD * .

1 999 1 ‘ 0

0.00000 0.00000 0.00000 4.731666667 0.42500 36.0000C
000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
1.000 2.000 3.000 4,000 5.000 6.000 7.000
9.000 10.000 11.000 12.000 13.000 14.000 15.000

(85)

